A germ-free humanized mouse model shows the contribution of resident microbiota to human-specific pathogen infection

A germ-free humanized mouse model shows the contribution of resident microbiota to human-specific pathogen infection

Data availability

Source data for Figs. 1–5 and Extended Data Figs. 1–8 are provided with the manuscript.

References

Brestoff, J. R. & Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol.14, 676–684 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chung, H. et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell149, 1578–1593 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Robinson, C. M. & Pfeiffer, J. K. Viruses and the microbiota. Annu. Rev. Virol.1, 55–69 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ubeda, C., Djukovic, A. & Isaac, S. Roles of the intestinal microbiota in pathogen protection. Clin Transl. Immunol.6, e128 (2017).

Article 

Google Scholar 

Baldridge, M. T. et al. Commensal microbes and interferon-lambda determine persistence of enteric murine norovirus infection. Science347, 266–269 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Cortez, V. et al. Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier. Nat. Commun.11, 2097 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Robinson, C. M., Jesudhasan, P. R. & Pfeiffer, J. K. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host Microbe15, 36–46 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Jones, M. K. et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science346, 755–759 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kane, M. et al. Successful transmission of a retrovirus depends on the commensal microbiota. Science334, 245–249 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kuss, S. K. et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science334, 249–252 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wilks, J. & Golovkina, T. Influence of microbiota on viral infections. PLoS Pathog.8, e1002681 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ponte, R. et al. Reversing gut damage in HIV infection: using non-human primate models to instruct clinical research. eBioMedicine4, 40–49 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kennedy, E. A., King, K. Y. & Baldridge, M. T. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol.9, 1534 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Odumade, O. A., Hogquist, K. A. & Balfour, H. H. Jr. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin. Microbiol. Rev.24, 193–209 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

MacMahon, E. M. et al. Epstein-Barr virus in AIDS-related primary central nervous system lymphoma. Lancet338, 969–973 (1991).

Article 
CAS 
PubMed 

Google Scholar 

Zhang, L. et al. Interferon regulatory factor 7 is associated with Epstein-Barr virus-transformed central nervous system lymphoma and has oncogenic properties. J. Virol.78, 12987–12995 (2004).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Raab-Traub, N. Epstein-Barr virus and nasopharyngeal carcinoma. Semin. Cancer Biol.3, 297–307 (1992).

CAS 
PubMed 

Google Scholar 

zur Hausen, H. et al. EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature228, 1056–1058 (1970).

Article 
CAS 
PubMed 

Google Scholar 

Weiss, L. M., Movahed, L. A., Warnke, R. A. & Sklar, J. Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease. N. Engl. J. Med.320, 502–506 (1989).

Article 
CAS 
PubMed 

Google Scholar 

Cohen, J. I., Fauci, A. S., Varmus, H. & Nabel, G. J. Epstein-Barr virus: an important vaccine target for cancer prevention. Sci. Transl. Med.3, 107fs107 (2011).

Article 

Google Scholar 

UNAIDS Data 2021. UNAIDS https://www.unaids.org/sites/default/files/media_asset/JC3032_AIDS_Data_book_2021_En.pdf (2021).

Brenchley, J. M. & Douek, D. C. HIV infection and the gastrointestinal immune system. Mucosal Immunol.1, 23–30 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med.12, 1365–1371 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Dillon, S. M. et al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol.7, 983–994 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Guadalupe, M. et al. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol.77, 11708–11717 (2003).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Mutlu, E. A. et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog.10, e1003829 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Estes, J. D. et al. Defining total-body AIDS-virus burden with implications for curative strategies. Nat. Med.23, 1271–1276 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Busman-Sahay, K., Starke, C. E., Nekorchuk, M. D. & Estes, J. D. Eliminating HIV reservoirs for a cure: the issue is in the tissue. Curr. Opin. HIV AIDS16, 200–208 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Rogala, A. R., Oka, A. & Sartor, R. B. Strategies to dissect host-microbial immune interactions that determine mucosal homeostasis vs. intestinal inflammation in gnotobiotic Mice. Front. Immunol.11, 214 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Murer, A. et al. MicroRNAs of Epstein-Barr virus attenuate T-cell-mediated immune control in vivo. mBio10, e01941-18 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Antsiferova, O. et al. Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice. PLoS Pathog.10, e1004333 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Pender, M. P., Csurhes, P. A., Pfluger, C. M. & Burrows, S. R. CD8 T cell deficiency impairs control of Epstein–Barr virus and worsens with age in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry83, 353–354 (2012).

Article 
PubMed 

Google Scholar 

Kovarova, M. et al. HIV pre-exposure prophylaxis for women and infants prevents vaginal and oral HIV transmission in a preclinical model of HIV infection. J. Antimicrob. Chemother.71, 3185–3194 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wahl, A. et al. Breast milk of HIV-positive mothers has potent and species-specific in vivo HIV-inhibitory activity. J. Virol.89, 10868–10878 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wahl, A. et al. Human breast milk and antiretrovirals dramatically reduce oral HIV-1 transmission in BLT humanized mice. PLoS Pathog.8, e1002732 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chateau, M. L., Denton, P. W., Swanson, M. D., McGowan, I. & Garcia, J. V. Rectal transmission of transmitted/founder HIV-1 is efficiently prevented by topical 1% tenofovir in BLT humanized mice. PLoS ONE8, e60024 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ochsenbauer, C. et al. Generation of transmitted/founder HIV-1 infectious molecular clones and characterization of their replication capacity in CD4 T lymphocytes and monocyte-derived macrophages. J. Virol.86, 2715–2728 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol.14, e1002533 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Doolittle, J. M. & Webster-Cyriaque, J. Polymicrobial infection and bacterium-mediated epigenetic modification of DNA tumor viruses contribute to pathogenesis. mBio5, e01015-14 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Imai, K. et al. The periodontal pathogen Porphyromonas gingivalis induces the Epstein-Barr virus lytic switch transactivator ZEBRA by histone modification. Biochimie94, 839–846 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Westphal, E. M., Blackstock, W., Feng, W., Israel, B. & Kenney, S. C. Activation of lytic Epstein-Barr virus (EBV) infection by radiation and sodium butyrate in vitro and in vivo: a potential method for treating EBV-positive malignancies. Cancer Res.60, 5781–5788 (2000).

CAS 
PubMed 

Google Scholar 

Westphal, E. M. et al. Induction of lytic Epstein-Barr virus (EBV) infection in EBV-associated malignancies using adenovirus vectors in vitro and in vivo. Cancer Res.59, 1485–1491 (1999).

CAS 
PubMed 

Google Scholar 

Chien, Y. C. et al. Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N. Engl. J. Med.345, 1877–1882 (2001).

Article 
CAS 
PubMed 

Google Scholar 

Wen, Y., Xu, H., Han, J., Jin, R. & Chen, H. How does Epstein-Barr virus interact with other microbiomes in EBV-driven cancers? Front. Cell. Infect. Microbiol.12, 852066 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kashyap, D., Baral, B., Jakhmola, S., Singh, A. K. & Jha, H. C. Helicobacter pylori and Epstein-Barr virus coinfection stimulates aggressiveness in gastric cancer through the regulation of gankyrin. mSphere6, e0075121 (2021).

Article 
PubMed 

Google Scholar 

Walter, B. L. et al. Role of low CD4 levels in the influence of human immunodeficiency virus type 1 envelope V1 and V2 regions on entry and spread in macrophages. J. Virol.79, 4828–4837 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

de Roda Husman, A. M., Blaak, H., Brouwer, M. & Schuitemaker, H. CC chemokine receptor 5 cell-surface expression in relation to CC chemokine receptor 5 genotype and the clinical course of HIV-1 infection. J. Immunol.163, 4597–4603 (1999).

Article 
PubMed 

Google Scholar 

Reynes, J. et al. CD4+ T cell surface CCR5 density as a determining factor of virus load in persons infected with human immunodeficiency virus type 1. J. Infect. Dis.181, 927–932 (2000).

Article 
CAS 
PubMed 

Google Scholar 

Ostrowski, M. A. et al. Expression of chemokine receptors CXCR4 and CCR5 in HIV-1-infected and uninfected individuals. J. Immunol.161, 3195–3201 (1998).

Article 
CAS 
PubMed 

Google Scholar 

Reynes, J. et al. CD4 T cell surface CCR5 density as a host factor in HIV-1 disease progression. AIDS15, 1627–1634 (2001).

Article 
CAS 
PubMed 

Google Scholar 

Yang, X. et al. High CCR5 density on central memory CD4+ T cells in acute HIV-1 infection is mostly associated with rapid disease progression. PLoS ONE7, e49526 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Meijerink, H. et al. The number of CCR5 expressing CD4+ T lymphocytes is lower in HIV-infected long-term non-progressors with viral control compared to normal progressors: a cross-sectional study. BMC Infect. Dis.14, 683 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Weissman, D. et al. Interleukin-2 up-regulates expression of the human immunodeficiency virus fusion coreceptor CCR5 by CD4+ lymphocytes in vivo. J. Infect. Dis.181, 933–938 (2000).

Article 
CAS 
PubMed 

Google Scholar 

Yang, Y. F. et al. IL-12 as well as IL-2 upregulates CCR5 expression on T cell receptor-triggered human CD4+ and CD8+ T cells. J. Clin. Immunol.21, 116–125 (2001).

Article 
CAS 
PubMed 

Google Scholar 

Valentin, A. et al. Dual effect of interleukin 4 on HIV-1 expression: implications for viral phenotypic switch and disease progression. Proc. Natl Acad. Sci. USA95, 8886–8891 (1998).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Patterson, B. K. et al. Regulation of CCR5 and CXCR4 expression by type 1 and type 2 cytokines: CCR5 expression is downregulated by IL-10 in CD4-positive lymphocytes. Clin. Immunol.91, 254–262 (1999).

Article 
CAS 
PubMed 

Google Scholar 

Claireaux, M. et al. Low CCR5 expression protects HIV-specific CD4+ T cells of elite controllers from viral entry. Nat. Commun.13, 521 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

McBrien, J. B. et al. Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8+ cells. Nature578, 154–159 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Nixon, C. C. et al. Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo. Nature578, 160–165 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Denton, P. W. et al. Systemic administration of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in humanized BLT mice. PLoS ONE5, e8829 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar 

Denton, P. W. et al. One percent tenofovir applied topically to humanized BLT mice and used according to the CAPRISA 004 experimental design demonstrates partial protection from vaginal HIV infection, validating the BLT model for evaluation of new microbicide candidates. J. Virol.85, 7582–7593 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wahl, A. et al. Predicting HIV pre-exposure prophylaxis efficacy for women using a preclinical pharmacokinetic-pharmacodynamic in vivo model. Sci. Rep.7, 41098 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hayes, C. L. et al. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci. Rep.8, 14184 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Smith, P. M. & Garrett, W. S. The gut microbiota and mucosal T cells. Front. Microbiol.2, 111 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar 

Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol.9, 313–323 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Niess, J. H. & Adler, G. Enteric flora expands gut lamina propria CX3CR1+ dendritic cells supporting inflammatory immune responses under normal and inflammatory conditions. J. Immunol.184, 2026–2037 (2010).

Article 
CAS 
PubMed 

Google Scholar 

Umesaki, Y., Setoyama, H., Matsumoto, S. & Okada, Y. Expansion of alpha beta T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology79, 32–37 (1993).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol.4, 478–485 (2004).

Article 
CAS 
PubMed 

Google Scholar 

Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. Nature516, 94–98 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Krych, L., Hansen, C. H., Hansen, A. K., van den Berg, F. W. & Nielsen, D. S. Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS ONE8, e62578 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Park, J. C. & Im, S. H. Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Exp. Mol. Med.52, 1383–1396 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell139, 485–498 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Alameddine, J. et al. Faecalibacterium prausnitzii skews human DC to prime IL10-producing T cells through TLR2/6/JNK signaling and IL-10, IL-27, CD39, and IDO-1 induction. Front. Immunol.10, 143 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Daharsh, L., Zhang, J., Ramer-Tait, A. & Li, Q. A double humanized BLT-mice model featuring a stable human-like gut microbiome and human immune system. J. Vis. Exp. https://doi.org/10.3791/59773 (2019).

Article 
PubMed 

Google Scholar 

Singh, M. et al. Minocycline attenuates HIV-1 infection and suppresses chronic immune activation in humanized NOD/LtsZ-scidIL-2Rγnull mice. Immunology142, 562–572 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Nahui Palomino, R. A. et al. Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV-1 infection of human tissues. Nat. Commun.10, 5656 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wahl, A. et al. Precision mouse models with expanded tropism for human pathogens. Nat. Biotechnol.37, 1163–1173 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wahl, A. et al. SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature591, 451–457 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Melkus, M. W. et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat. Med.12, 1316–1322 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Akkina, R. et al. Small animal models for human immunodeficiency virus (HIV), hepatitis B, and tuberculosis: proceedings of an NIAID workshop. Curr. HIV Res.18, 19–28 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Council, O. D., Swanson, M. D., Spagnuolo, R. A., Wahl, A. & Garcia, J. V. Role of semen on vaginal HIV-1 transmission and maraviroc protection. Antimicrob. Agents Chemother.59, 7847–7851 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Denton, P. W. et al. Generation of HIV latency in humanized BLT mice. J. Virol.86, 630–634 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Honeycutt, J. B. et al. T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J. Clin. Invest.128, 2862–2876 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Honeycutt, J. B. et al. HIV-1 infection, response to treatment and establishment of viral latency in a novel humanized T cell-only mouse (TOM) model. Retrovirology10, 121 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar 

Honeycutt, J. B. et al. Macrophages sustain HIV replication in vivo independently of T cells. J. Clin. Invest.126, 1353–1366 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Olesen, R. et al. ART influences HIV persistence in the female reproductive tract and cervicovaginal secretions. J. Clin. Invest.126, 892–904 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Shanmugasundaram, U. et al. Efficient inhibition of HIV replication in the gastrointestinal and female reproductive tracts of humanized BLT mice by EFdA. PLoS ONE11, e0159517 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Sun, Z. et al. Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J. Exp. Med.204, 705–714 (2007).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wang, L. X. et al. Humanized-BLT mouse model of Kaposi’s sarcoma-associated herpesvirus infection. Proc. Natl Acad. Sci. USA111, 3146–3151 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Packey, C. D. et al. Molecular detection of bacterial contamination in gnotobiotic rodent units. Gut Microbes4, 361–370 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar 

Denton, P. W. et al. IL-2 receptor γ-chain molecule is critical for intestinal T-cell reconstitution in humanized mice. Mucosal Immunol.5, 555–566 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Nochi, T., Denton, P. W., Wahl, A. & Garcia, J. V. Cryptopatches are essential for the development of human GALT. Cell Rep.3, 1874–1884 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Allali, I. et al. A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC Microbiol.17, 194 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Azcarate-Peril, M. A. et al. An attenuated Salmonella enterica serovar Typhimurium strain and galacto-oligosaccharides accelerate clearance of Salmonella infections in poultry through modifications to the gut microbiome. Appl. Environ. Microbiol.84, e02526-17 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Guadamuro, L., Azcarate-Peril, M. A., Tojo, R., Mayo, B. & Delgado, S. Use of high throughput amplicon sequencing and ethidium monoazide dye to track microbiota changes in an equol-producing menopausal woman receiving a long-term isoflavones treatment. AIMS Microbiol.5, 102–116 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA108, 4516–4522 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Mohsen, A., Park, J., Chen, Y. A., Kawashima, H. & Mizuguchi, K. Impact of quality trimming on the efficiency of reads joining and diversity analysis of Illumina paired-end reads in the context of QIIME1 and QIIME2 microbiome analysis frameworks. BMC Bioinformatics20, 581 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods13, 581–583 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin. Microbiome6, 90 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Delecluse, H. J., Hilsendegen, T., Pich, D., Zeidler, R. & Hammerschmidt, W. Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc. Natl Acad. Sci. USA95, 8245–8250 (1998).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kumar, R., Whitehurst, C. B. & Pagano, J. S. The Rad6/18 ubiquitin complex interacts with the Epstein-Barr virus deubiquitinating enzyme, BPLF1, and contributes to virus infectivity. J. Virol.88, 6411–6422 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Whitehurst, C. B. et al. HIV co-infection augments EBV-induced tumorigenesis in vivo. Front. Virol.2, 861628 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wahl, A. et al. A cluster of virus-encoded microRNAs accelerates acute systemic Epstein-Barr virus infection but does not significantly enhance virus-induced oncogenesis in vivo. J. Virol.87, 5437–5446 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Therneau, T. A package for survival analysis in R. R package version 3.2-11 https://CRAN.R-project.org/package=survival (2021).

Gray, R. J. cmprsk: Subdistribution analysis of competing risks. R package version 2.2-11 https://CRAN.R-project.org/package=cmprsk (2022).

Aalen, O. O. & Johansen, S. An empirical transition matrix for non-homogeneous Markov chains based on censored observations. Scand. J. Stat.5, 141–150 (1978).

Google Scholar 

Gray, R. J. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann. Stat.16, 1141–1154 (1988).

Article 

Google Scholar 

Download references

Acknowledgements

We thank current and former members of the Garcia and Wahl laboratories for technical assistance and technicians at the UNC National Gnotobiotic Rodent Resource Center, Microbiome Core Facility, Division of Comparative Medicine, and Animal Histopathology and Clinical Chemistry Core for technical support. We also thank M. Kane, S. Lemon, J. Turpin and N. Raab-Traub for helpful comments and discussions. Figure 1a was created using BioRender.com. This work was supported by funding from NIH grants AI123010 (A.W.), DK131585 (A.W., J.V.G. and R.B.S), 1UM1AI126619 (current award 1UM1AI164567; J.V.G), P40OD010995 (R.B.S. and A.R.R.), P30DK034987 (R.B.S), U19AI082637 (I.M.) and FIC D43TW009532 (J.D.T). The UNC CFAR Biostatistics Core is supported by NIH-funded program P30AI050410. UNC Animal Histopathology & Clinical Chemistry is supported in part by an NCI Center Core Support Grant (5P30CA016080-42). The UNC Microbiome Core is funded in part by the Center for Gastrointestinal Biology and Disease (P30 DK034987) and the UNC Nutrition Obesity Research Center (P30 DK056350).

Author information

Author notes

These authors contributed equally: Angela Wahl, Wenbo Yao, Baolin Liao.

Authors and Affiliations

International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Angela Wahl, Wenbo Yao, Baolin Liao, Morgan Chateau, Cara Richardson, Lijun Ling, Adrienne Franks, Krithika Senthil, Genevieve Doyon & J. Victor Garcia

Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Angela Wahl, Wenbo Yao, Baolin Liao, Morgan Chateau, Cara Richardson, Lijun Ling, Adrienne Franks, Krithika Senthil, Genevieve Doyon, Joseph D. Tucker & J. Victor Garcia

Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Angela Wahl, Wenbo Yao, Baolin Liao, Morgan Chateau, Cara Richardson, Lijun Ling, Adrienne Franks, Krithika Senthil, Genevieve Doyon & J. Victor Garcia

Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China

Baolin Liao

Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Fengling Li, Josh Frost, M. Andrea Azcarate-Peril, Allison R. Rogala, R. Balfour Sartor & J. Victor Garcia

Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Josh Frost, Craig A. Fletcher & Allison R. Rogala

Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA

Christopher B. Whitehurst

Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Joseph S. Pagano & R. Balfour Sartor

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Joseph S. Pagano

Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Joseph S. Pagano

Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

M. Andrea Azcarate-Peril & R. Balfour Sartor

UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA

M. Andrea Azcarate-Peril

Department of Biostatistics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Michael G. Hudgens

Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK

Joseph D. Tucker

Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA

Ian McGowan

Orion Biotechnology, Ottawa, Ontario, Canada

Ian McGowan

Contributions

W.Y., B.L., C.R., M.C. and A.W. constructed BLT mice, necropsied mice, and performed flow cytometric analysis of peripheral blood and tissues. G.D. contributed to the flow cytometric analysis of tissues. W.Y. and A.W. performed the immunohistochemical analysis. A.W., A.F., K.S. and G.D. performed experiments with EBV-exposed BLT mice, and A.W. analyzed the data. C.B.W and J.S.P. contributed to the EBV studies. W.Y., C.R. and A.W. performed experiments with HIV-exposed BLT mice and analyzed data. L.L. assisted with rectal HIV exposures. F.L. and J.F. contributed to the rederivation of GF mice and microbial testing. M.A.A. contributed to the microbiome sequencing analysis. M.G.H assisted with statistical analyses and data presentation. A.R.R. and R.B.S contributed to the rederivation of GF mice, microbial testing and experimental design. I.M. contributed to the conceptualization of the study. C.A.F and J.D.T. contributed to data interpretation, and J.D.T also assisted with the supervision of B.L. J.V.G. and A.W. conceived and designed the study and experiments; supervised the work; and contributed to data interpretation, analysis, data presentation, and manuscript conceptualization and writing.

Corresponding authors

Correspondence to
Angela Wahl or J. Victor Garcia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Fecal bacterial microbiome of CV-BLT mice.

The composition of the bacterial microbiome was analyzed by 16S amplicon sequencing in fecal pellets collected from CV-BLT mice (n=10). The mean relative abundance at the a, phylum and b, genus levels are shown. Taxa with a mean relative abundance
>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Nature.com – https://www.nature.com/articles/s41587-023-01906-5

Exit mobile version