Branched chemically modified poly(A) tails enhance the translation capacity of mRNA

Branched chemically modified poly(A) tails enhance the translation capacity of mRNA

Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov.13, 759–780 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Weng, Y. et al. The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv.40, 107534 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Rohner, E., Yang, R., Foo, K. S., Goedel, A. & Chien, K. R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol.40, 1586–1600 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med.384, 403–416 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Walsh, E. E. et al. Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates. N. Engl. J. Med.383, 2439–2450 (2020)

Article 
CAS 
PubMed 

Google Scholar 

Collén, A. et al. VEGFA mRNA for regenerative treatment of heart failure. Nat. Rev. Drug Discov.21, 79–80 (2022).

Article 
PubMed 

Google Scholar 

Mullard, A. mRNA-based drug approaches phase I milestone. Nat. Rev. Drug Discov.15, 595 (2016).

Article 
PubMed 

Google Scholar 

A study of VERVE-101 in patients with familial hypercholesterolemia and cardiovascular disease. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT05398029?term=verve101&draw=2&rank=1 (2023).

Rybakova, Y. et al. mRNA delivery for therapeutic anti-HER2 antibody expression in vivo. Mol. Ther.27, 1415–1423 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med.385, 493–502 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Ramaswamy, S. et al. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc. Natl Acad. Sci. USA114, E1941–E1950 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Jiang, L. et al. Dual mRNA therapy restores metabolic function in long-term studies in mice with propionic acidemia. Nat. Commun.11, 5339 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther.16, 1833–1840 (2008).

Article 
PubMed 

Google Scholar 

Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity23, 165–175 (2005).

Article 
PubMed 

Google Scholar 

Kormann, M. S. D. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol.29, 154–157 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Leppek, K. et al. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat. Commun.13, 1536 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Asrani, K. H. et al. Optimization of mRNA untranslated regions for improved expression of therapeutic mRNA. RNA Biol.15, 756–762 (2018).

PubMed 
PubMed Central 

Google Scholar 

Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun.9, 2629 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 

Chen, R. et al. Engineering circular RNA for enhanced protein production. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01393-0 (2022).

Schlake, T., Thess, A., Thran, M. & Jordan, I. mRNA as novel technology for passive immunotherapy. Cell. Mol. Life Sci.76, 301–328 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Thess, A. et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther.23, 1456–1464 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Koch, A., Aguilera, L., Morisaki, T., Munsky, B. & Stasevich, T. J. Quantifying the dynamics of IRES and cap translation with single-molecule resolution in live cells. Nat. Struct. Mol. Biol.27, 1095–1104 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bloom, K., van den Berg, F. & Arbuthnot, P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther.28, 117–129 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell136, 731–745 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kahvejian, A., Roy, G. & Sonenberg, N. The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harb. Symp. Quant. Biol.66, 293–300 (2001).

Article 
CAS 
PubMed 

Google Scholar 

Hinnebusch, A. G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem.83, 779–812 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Eisen, T. J. et al. The dynamics of cytoplasmic mRNA metabolism. Mol. Cell77, 786–799.e10 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wang, Z., Day, N., Trifillis, P. & Kiledjian, M. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol. Cell. Biol.19, 4552–4560 (1999).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Mangus, D. A., Evans, M. C. & Jacobson, A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol.4, 223 (2003).

Article 
PubMed 
PubMed Central 

Google Scholar 

Bernstein, P., Peltz, S. W. & Ross, J. The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro. Mol. Cell. Biol.9, 659–670 (1989).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Aditham, A. et al. Chemically modified mocRNAs for highly efficient protein expression in mammalian cells. ACS Chem. Biol.17, 3352–3366 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Sawazaki, R. et al. Characterization of the multimeric structure of poly(A)-binding protein on a poly(A) tail. Sci. Rep.8, 1455 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 

Kühn, U. & Pieler, T. Xenopus poly(A) binding protein: functional domains in RNA binding and protein-protein interaction. J. Mol. Biol.256, 20–30 (1996).

Article 
PubMed 

Google Scholar 

Coombes, C. E. & Boeke, J. D. An evaluation of detection methods for large lariat RNAs. RNA11, 323–331 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Katolik, A. et al. Regiospecific solid-phase synthesis of branched oligoribonucleotides that mimic intronic lariat RNA intermediates. J. Org. Chem.79, 963–975 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Escorihuela, J. et al. Direct covalent attachment of DNA microarrays by rapid thiol-ene “click” chemistry. Bioconjug. Chem.25, 618–627 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Greenberg, M. M. Attachment of reporter and conjugate groups to the 3′ termini of oligonucleotides. Curr. Protoc. Nucleic Acid Chem. https://doi.org/10.1002/0471142700.nc0405s02 (2001).

El-Sagheer, A. H. & Brown, T. Single tube gene synthesis by phosphoramidate chemical ligation. Chem. Commun.53, 10700–10702 (2017).

Article 
CAS 

Google Scholar 

Kalinowski, M. et al. Phosphoramidate ligation of oligonucleotides in nanoscale structures. ChemBioChem17, 1150–1155 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Ehret, F., Zhou, C. Y., Alexander, S. C., Zhang, D. & Devaraj, N. K. Site-specific covalent conjugation of modified mRNA by tRNA guanine transglycosylase. Mol. Pharm.15, 737–742 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Zhang, D. et al. Site-specific and enzymatic cross-linking of sgRNA enables wavelength-selectable photoactivated control of CRISPR gene editing. J. Am. Chem. Soc.144, 4487–4495 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Fantoni, N. Z., El-Sagheer, A. H. & Brown, T. A hitchhiker’s guide to click-chemistry with nucleic acids. Chem. Rev.121, 7122–7154 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Warminski, M., Kowalska, J. & Jemielity, J. Solid-phase synthesis of RNA 5′-azides and their application for labeling, ligation, and cyclization via click chemistry. Curr. Protoc. Nucleic Acid Chem.82, e112 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Kühn, U. & Wahle, E. Structure and function of poly(A) binding proteins. Biochim. Biophys. Acta1678, 67–84 (2004).

Article 
PubMed 

Google Scholar 

Deo, R. C., Bonanno, J. B., Sonenberg, N. & Burley, S. K. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell98, 835–845 (1999).

Article 
CAS 
PubMed 

Google Scholar 

Vogel, A. B. et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature592, 283–289 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol.31, 638–646 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science361, eaat5691 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Zeng, H. et al. Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of Alzheimer’s disease. Nat. Neurosci.26, 430–446 (2023).

CAS 
PubMed 

Google Scholar 

Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science380, eadd3067 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Xiang, K. & Bartel, D. P. The molecular basis of coupling between poly(A)-tail length and translational efficiency. eLife10, e66493 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Li, X. et al. Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem.273, 34970–34975 (1998).

Article 
CAS 
PubMed 

Google Scholar 

Nicholson-Shaw, A. L., Kofman, E. R., Yeo, G. W. & Pasquinelli, A. E. Nuclear and cytoplasmic poly(A) binding proteins (PABPs) favor distinct transcripts and isoforms. Nucleic Acids Res.50, 4685–4702 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Perzanowska, O., Smietanski, M., Jemielity, J. & Kowalska, J. Chemically modified poly(A) analogs targeting PABP: structure activity relationship and translation inhibitory properties. Chemistry28, e202201115 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Görlach, M., Burd, C. G. & Dreyfuss, G. The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. Exp. Cell. Res.211, 400–407 (1994).

Article 
PubMed 

Google Scholar 

Schäfer, I. B. et al. Molecular basis for poly(A) RNP architecture and recognition by the Pan2–Pan3 deadenylase. Cell177, 1619–1631.e21 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Webster, M. W. et al. mRNA deadenylation is coupled to translation rates by the differential activities of Ccr4–Not nucleases. Mol. Cell70, 1089–1100.e8 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Dehlin, E., Wormington, M., Körner, C. G. & Wahle, E. Cap-dependent deadenylation of mRNA. EMBO J.19, 1079–1086 (2000).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ruud, K. A., Kuhlow, C., Goss, D. J. & Browning, K. S. Identification and characterization of a novel cap-binding protein from Arabidopsis thaliana. J. Biol. Chem.273, 10325–10330 (1998).

Article 
CAS 
PubMed 

Google Scholar 

Shestakova, E. D., Smirnova, V. V., Shatsky, I. N. & Terenin, I. M. Specific mechanisms of translation initiation in higher eukaryotes: the eIF4G2 story. RNA29, 282–299 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ho, J. J. D. et al. Systemic reprogramming of translation efficiencies on oxygen stimulus. Cell Rep.14, 1293–1300 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Moerke, N. J. et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell128, 257–267 (2007).

Article 
CAS 
PubMed 

Google Scholar 

Jang, D.-I. et al. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci.22, 2719 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Giannini, E. G., Testa, R. & Savarino, V. Liver enzyme alteration: a guide for clinicians. CMAJ172, 367–379 (2005).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kumar, A., Zhang, J. & Yu, F.-S. X. Toll-like receptor 3 agonist poly(I:C)-induced antiviral response in human corneal epithelial cells. Immunology117, 11–21 (2006).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Okahira, S. et al. Interferon-beta induction through Toll-like receptor 3 depends on double-stranded RNA structure. DNA Cell Biol.24, 614–623 (2005).

Article 
CAS 
PubMed 

Google Scholar 

Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol.39, 949–957 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Robson, A. Three different therapies to target PCSK9. Nat. Rev. Cardiol.18, 541 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Nelson, C. E. et al. Long-term evaluation of AAV–CRISPR genome editing for Duchenne muscular dystrophy. Nat. Med.25, 427–432 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature593, 429–434 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Qiu, M. et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc. Natl Acad. Sci. USA118, e2020401118 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhou, J. et al. Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting. FEBS J.281, 1717–1725 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Park, J. et al. Short poly(A) tails are protected from deadenylation by the LARP1–PABP complex. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-023-00930-y (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Arevalo, C. P. et al. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science378, 899–904 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Foy, S. P. et al. Non-viral precision T cell receptor replacement for personalized cell therapy. Nature615, 687–69 (2023).

Dong, Y. et al. DNA functional materials assembled from branched DNA: design, synthesis, and applications. Chem. Rev.120, 9420–9481 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Horn, T., Chang, C. A. & Urdea, M. S. Chemical synthesis and characterization of branched oligodeoxyribonucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays. Nucleic Acids Res.25, 4842–4849 (1997).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chen, H. et al. Branched, chemically modified poly(A) tails enhance the translation capacity of mRNA. Sequence Read Archive https://www.ncbi.nlm.nih.gov/sra/PRJNA1072971 (2024).

Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol.40, 731–740 (2022).

Article 
CAS 
PubMed 

Google Scholar 

>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Nature.com – https://www.nature.com/articles/s41587-024-02174-7

Exit mobile version