Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature578, 229–236 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol.38, 824–844 (2020).
Article
CAS
PubMed
Google Scholar
van Overbeek, M. et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol. Cell63, 633–646 (2016).
Article
PubMed
Google Scholar
Shen, M. W. et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature563, 646–651 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol.36, 765–771 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet.53, 895–905 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosicki, M. et al. Cas9-induced large deletions and small indels are controlled in a convergent fashion. Nat. Commun.13, 3422 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Alanis-Lobato, G. et al. Frequent loss of heterozygosity in CRISPR–Cas9-edited early human embryos. Proc. Natl Acad. Sci. USA118, e2004832117 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Enache, O. M. et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat. Genet.52, 662–668 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med.24, 927–930 (2018).
Article
CAS
PubMed
Google Scholar
Ihry, R. J. et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med.24, 939–946 (2018).
Article
CAS
PubMed
Google Scholar
Cullot, G. et al. CRISPR–Cas9 genome editing induces megabase-scale chromosomal truncations. Nat. Commun.10, 1136 (2019).
Article
PubMed
PubMed Central
Google Scholar
Cullot, G. et al. Cell cycle arrest and p53 prevent ON-target megabase-scale rearrangements induced by CRISPR–Cas9. Nat. Commun.14, 4072 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Boutin, J. et al. CRISPR–Cas9 globin editing can induce megabase-scale copy-neutral losses of heterozygosity in hematopoietic cells. Nat. Commun.12, 4922 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai, H.-H. et al. Whole genomic analysis reveals atypical non-homologous off-target large structural variants induced by CRISPR–Cas9-mediated genome editing. Nat. Commun.14, 5183 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hustedt, N. & Durocher, D. The control of DNA repair by the cell cycle. Nat. Cell Biol.19, 1–9 (2017).
Article
CAS
Google Scholar
Yeh, C. D., Richardson, C. D. & Corn, J. E. Advances in genome editing through control of DNA repair pathways. Nat. Cell Biol.21, 1468–1478 (2019).
Article
CAS
PubMed
Google Scholar
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature533, 420–424 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature551, 464–471 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet.19, 770–788 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Grünewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature569, 433–437 (2019).
Article
PubMed
PubMed Central
Google Scholar
Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science364, 289–292 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Park, S. & Beal, P. A. Off-target editing by CRISPR-guided DNA base editors. Biochemistry58, 3727–3734 (2019).
Article
CAS
PubMed
Google Scholar
Huang, T. P., Newby, G. A. & Liu, D. R. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat. Protoc.16, 1089–1128 (2021).
Article
CAS
PubMed
Google Scholar
Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discovery19, 839–859 (2020).
Article
CAS
PubMed
Google Scholar
Halperin, S. O. et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature560, 248–252 (2018).
Article
CAS
PubMed
Google Scholar
Tou, C. J., Schaffer, D. V. & Dueber, J. E. Targeted diversification in the S. cerevisiae genome with CRISPR-guided DNA polymerase I. ACS Synth. Biol.9, 1911–1916 (2020).
Article
CAS
PubMed
Google Scholar
Long, M. et al. Directed evolution of ornithine cyclodeaminase using an EvolvR-based growth-coupling strategy for efficient biosynthesis of l-proline. ACS Synth. Biol.9, 1855–1863 (2020).
Article
CAS
PubMed
Google Scholar
Gossing, M. et al. Multiplexed guide RNA expression leads to increased mutation frequency in targeted window using a CRISPR-guided error-prone DNA polymerase in Saccharomyces cerevisiae. ACS Synth. Biol.12, 2271–2277 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakade, S. et al. Frame editors for precise, template-free frameshifting. Preprint at https://doi.org/10.1101/2022.12.05.518807 (2022).
Yang, Q. et al. Phage DNA polymerase prevents on-target damage and enhances precision of CRISPR editing. Preprint at https://doi.org/10.1101/2023.01.10.523496 (2023).
Yoo, K. W., Yadav, M. K., Song, Q., Atala, A. & Lu, B. Targeting DNA polymerase to DNA double-strand breaks reduces DNA deletion size and increases templated insertions generated by CRISPR/Cas9. Nucleic Acids Res.50, 3944–3957 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharon, E. et al. Functional genetic variants revealed by massively parallel precise genome editing. Cell175, 544–557.e16 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature576, 149–157 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong, X. et al. Precise genome editing without exogenous donor DNA via retron editing system in human cells. Protein Cell12, 899–902 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao, B., Chen, S.-A. A., Lee, J. & Fraser, H. B. Bacterial retrons enable precise gene editing in human cells. CRISPR J.5, 31–39 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet.24, 161–177 (2023).
Article
CAS
PubMed
Google Scholar
Berdis, A. J. Mechanisms of DNA polymerases. Chem. Rev.109, 2862–2879 (2009).
Article
CAS
PubMed
Google Scholar
Johansson, E. & Dixon, N. Replicative DNA polymerases. Cold Spring Harb. Perspect. Biol.5, a012799 (2013).
Article
PubMed
PubMed Central
Google Scholar
Ponnienselvan, K. et al. Addressing the dNTP bottleneck restricting prime editing activity. Preprint at https://doi.org/10.1101/2023.10.21.563443 (2023).
Egli, M. & Manoharan, M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res.51, 2529–2573 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandler, M. et al. Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat. Rev. Microbiol.11, 525–538 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lovendahl, K. N., Hayward, A. N. & Gordon, W. R. Sequence-directed covalent protein-DNA linkages in a single step using HUH-tags. J. Am. Chem. Soc.139, 7030–7035 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tompkins, K. J. et al. Molecular underpinnings of ssDNA specificity by Rep HUH-endonucleases and implications for HUH-tag multiplexing and engineering. Nucleic Acids Res.49, 1046–1064 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Aird, E. J., Lovendahl, K. N., St. Martin, A., Harris, R. S. & Gordon, W. R. Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun. Biol.1, 54 (2018).
Article
PubMed
PubMed Central
Google Scholar
Klenow, H. & Overgaard-Hansen, K. Proteolytic cleavage of DNA polymerase from Escherichia coli B into an exonuclease unit and a polymerase unit. FEBS Lett.6, 25–27 (1970).
Article
CAS
PubMed
Google Scholar
Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR–Cas9 using asymmetric donor DNA. Nat. Biotechnol.34, 339–344 (2016).
Article
CAS
PubMed
Google Scholar
Li, L. et al. Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J. Virol.84, 1674–1682 (2010).
Article
CAS
PubMed
Google Scholar
Chandra, A., Hughes, T. R., Nugent, C. I. & Lundblad, V. Cdc13 both positively and negatively regulates telomere replication. Genes Dev.15, 404–414 (2001).
Article
CAS
PubMed
PubMed Central
Google Scholar
Glustrom, L. W. et al. Single-stranded telomere-binding protein employs a dual rheostat for binding affinity and specificity that drives function. Proc. Natl Acad. Sci. USA115, 10315–10320 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Smiley, A. T. et al. Watson–Crick base-pairing requirements for ssDNA recognition and processing in replication-initiating HUH endonucleases. mBio14, e02587-22 (2023).
Article
PubMed
Google Scholar
Lawyer, F. C. et al. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. Genome Res.2, 275–287 (1993).
Article
CAS
Google Scholar
Blanco, L. et al. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem.264, 8935–8940 (1989).
Article
CAS
PubMed
Google Scholar
Esteban, J. A., Soengas, M. S., Salas, M. & Blanco, L. 3′ → 5′ exonuclease active site of phi 29 DNA polymerase. Evidence favoring a metal ion-assisted reaction mechanism. J. Biol. Chem.269, 31946–31954 (1994).
Article
CAS
PubMed
Google Scholar
Thyme, S. B., Akhmetova, L., Montague, T. G., Valen, E. & Schier, A. F. Internal guide RNA interactions interfere with Cas9-mediated cleavage. Nat. Commun.7, 11750 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ponnienselvan, K. et al. Reducing the inherent auto-inhibitory interaction within the pegRNA enhances prime editing efficiency. Nucleic Acids Res.51, 6966–6980 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang, W. et al. Enhancing CRISPR prime editing by reducing misfolded pegRNA interactions. eLife12, RP90948 (2024).
Article
PubMed
PubMed Central
Google Scholar
Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol.40, 402–410 (2022).
Article
CAS
PubMed
Google Scholar
Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell184, 5635–5652.e29 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferreira da Silva, J. et al. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nat. Commun.13, 760 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lahue, R. S., Au, K. G. & Modrich, P. DNA mismatch correction in a defined system. Science245, 160–164 (1989).
Article
CAS
PubMed
Google Scholar
Su, S. S., Lahue, R. S., Au, K. G. & Modrich, P. Mispair specificity of methyl-directed DNA mismatch correction in vitro. J. Biol. Chem.263, 6829–6835 (1988).
Article
CAS
PubMed
Google Scholar
Mathis, N. et al. Machine learning prediction of prime editing efficiency across diverse chromatin contexts. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02268-2 (2024).
Mathis, N. et al. Predicting prime editing efficiency and product purity by deep learning. Nat. Biotechnol.41, 1151–1159 (2023).
Article
CAS
PubMed
Google Scholar
Paquet, D. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature533, 125–129 (2016).
Article
CAS
PubMed
Google Scholar
Doman, J. L. et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell186, 3983–4002.e26 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Petri, K. et al. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nat. Biotechnol.40, 189–193 (2022).
Article
CAS
PubMed
Google Scholar
Grünewald, J. et al. Engineered CRISPR prime editors with compact, untethered reverse transcriptases. Nat. Biotechnol.41, 337–343 (2023).
Article
PubMed
Google Scholar
Li, X. et al. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nat. Commun.13, 1669 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ricchetti, M. & Buc, H. E. coli DNA polymerase I as a reverse transcriptase. EMBO J.12, 387–396 (1993).
Article
CAS
PubMed
PubMed Central
Google Scholar
Krzywkowski, T., Kühnemund, M., Wu, D. & Nilsson, M. Limited reverse transcriptase activity of phi29 DNA polymerase. Nucleic Acids Res.46, 3625–3632 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim, D. Y., Moon, S. B., Ko, J.-H., Kim, Y.-S. & Kim, D. Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res.48, 10576–10589 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu, Z. et al. PEAC-seq adopts Prime Editor to detect CRISPR off-target and DNA translocation. Nat. Commun.13, 7545 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang, S.-Q. et al. Genome-wide detection of CRISPR editing in vivo using GUIDE-tag. Nat. Commun.13, 437 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang, S.-Q. et al. Genome-wide profiling of prime editor off-target sites in vitro and in vivo using PE-tag. Nat. Methods20, 898–907 (2023).
Article
CAS
PubMed
Google Scholar
Bae, S., Park, J. & Kim, J.-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics30, 1473–1475 (2014).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamtekar, S. et al. Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage phi29. Mol. Cell16, 609–618 (2004).
Article
CAS
PubMed
Google Scholar
Rodríguez, I. et al. A specific subdomain in phi29 DNA polymerase confers both processivity and strand-displacement capacity. Proc. Natl Acad. Sci. USA102, 6407–6412 (2005).
Article
PubMed
PubMed Central
Google Scholar
de Vega, M., Lázaro, J. M., Mencía, M., Blanco, L. & Salas, M. Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs. Proc. Natl Acad. Sci. USA107, 16506–16511 (2010).
Article
PubMed
PubMed Central
Google Scholar
Povilaitis, T., Alzbutas, G., Sukackaite, R., Siurkus, J. & Skirgaila, R. In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique. Protein Eng. Des. Sel.29, 617–628 (2016).
Article
CAS
PubMed
Google Scholar
Ong, J., Tanner, N., Zhang, Y., Bei, Y. & Potapov, V. Variant DNA polymerases having improved properties and method for improved isothermal amplification of a target DNA. US Patent 11,371,028 (2021).
Plaper, T. et al. Coiled-coil heterodimers with increased stability for cellular regulation and sensing SARS-CoV-2 spike protein-mediated cell fusion. Sci. Rep.11, 9136 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lainšček, D. et al. Coiled-coil heterodimer-based recruitment of an exonuclease to CRISPR/Cas for enhanced gene editing. Nat. Commun.13, 3604 (2022).
Article
PubMed
PubMed Central
Google Scholar
Liu, B. et al. Targeted genome editing with a DNA-dependent DNA polymerase and exogenous DNA-containing templates. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01947-w (2023).
Article
PubMed
PubMed Central
Google Scholar
Trojan, J. et al. Functional analysis of hMLH1 variants and HNPCC-related mutations using a human expression system. Gastroenterology122, 211–219 (2002).
Article
CAS
PubMed
Google Scholar
Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov.19, 673–694 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan, W. et al. DNA polymerase preference determines PCR priming efficiency. BMC Biotech.14, 10 (2014).
Article
Google Scholar
Choi, J. et al. Precise genomic deletions using paired prime editing. Nat. Biotechnol.40, 218–226 (2022).
Article
CAS
PubMed
Google Scholar
Jiang, T., Zhang, X. O., Weng, Z. & Xue, W. Deletion and replacement of long genomic sequences using prime editing. Nat. Biotechnol.40, 227–234 (2022).
Article
CAS
PubMed
Google Scholar
Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol.40, 731–740 (2022).
Article
CAS
PubMed
Google Scholar
Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol.41, 500–512 (2023).
Article
CAS
PubMed
Google Scholar
Zheng, C. et al. Template-jumping prime editing enables large insertion and exon rewriting in vivo. Nat. Commun.14, 3369 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang, J. et al. Efficient targeted insertion of large DNA fragments without DNA donors. Nat. Methods19, 331–340 (2022).
Article
CAS
PubMed
Google Scholar
Gasiunas, G. et al. A catalogue of biochemically diverse CRISPR–Cas9 orthologs. Nat. Commun.11, 5512 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Altae-Tran, H. et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science374, 57–65 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Martín-Alonso, S., Frutos-Beltrán, E. & Menéndez-Arias, L. Reverse transcriptase: from transcriptomics to genome editing. Trends Biotechnol.39, 194–210 (2021).
Article
PubMed
Google Scholar
Shuto, Y. et al. Structural basis for pegRNA-guided reverse transcription by a prime editor. Nature631, 224–231 (2024).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang, L. et al. Efficient delivery of antisense oligonucleotides using bioreducible lipid nanoparticles in vitro and in vivo. Mol. Ther. Nucleic Acids19, 1357–1367 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Farbiak, L. et al. All‐in‐one dendrimer‐based lipid nanoparticles enable precise HDR‐mediated gene editing in vivo. Adv. Mater.33, 2006619 (2021).
Article
CAS
Google Scholar
Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA114, 2060–2065 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue, L. et al. High-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models. Nat. Commun.15, 1884 (2024).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen, K. et al. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR–Cas9 RNP. Preprint at https://doi.org/10.1101/2023.11.15.566339 (2023).
Wei, T. et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat. Commun.14, 7322 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Onuma, H., Sato, Y. & Harashima, H. Lipid nanoparticle-based ribonucleoprotein delivery for in vivo genome editing. J. Controlled Release355, 406–416 (2023).
Article
CAS
Google Scholar
Kazlauskas, D., Varsani, A., Koonin, E. V. & Krupovic, M. Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nat. Commun.10, 3425 (2019).
Article
PubMed
PubMed Central
Google Scholar
Kleinstiver, B. P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature523, 481–485 (2015).
Article
PubMed
PubMed Central
Google Scholar
Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res.22, 939–946 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kleinstiver, B. P. et al. Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol.37, 276–282 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol.37, 224–226 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
BBMap. SourceForge https://sourceforge.net/projects/bbmap (2022).
Iseli, C., Ambrosini, G., Bucher, P. & Jongeneel, C. V. Indexing strategies for rapid searches of short words in genome sequences. PLoS One2, e579 (2007).
Article
PubMed
PubMed Central
Google Scholar
Ferreira da Silva J., et al. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases. (Dataset. NCBI Sequence Read Archive); https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1015647 (2024).
>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Nature.com – https://www.nature.com/articles/s41587-024-02324-x