Gene trajectory inference for single-cell data by optimal transport metrics

Gene trajectory inference for single-cell data by optimal transport metrics

Mahdessian, D. et al. Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. Nature590, 649–654 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Scialdone, A. et al. Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods85, 54–61 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Skinner, S. O. et al. Single-cell analysis of transcription kinetics across the cell cycle. eLife5, e12175 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Cao, J., Zhou, W., Steemers, F., Trapnell, C. & Shendure, J. Sci-fate characterizes the dynamics of gene expression in single cells. Nat. Biotechnol.38, 980–988 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Qu, R. et al. Decomposing a deterministic path to mesenchymal niche formation by two intersecting morphogen gradients. Dev. Cell57, 1053–1067 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Macaulay, I. C. et al. Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells. Cell Rep.14, 966–977 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chu, L.-F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol.17, 173 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep.18, 3227–3241 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics19, 477 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature566, 496–502 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol.20, 59 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Van den Berge, K. et al. Trajectory-based differential expression analysis for single-cell sequencing data. Nat. Commun.11, 1201 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Deconinck, L., Cannoodt, R., Saelens, W., Deplancke, B. & Saeys, Y. Recent advances in trajectory inference from single-cell omics data. Curr. Opin. Syst. Biol.27, 100344 (2021).

Article 
CAS 

Google Scholar 

Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol.37, 547–554 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Methods19, 159–170 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods14, 979–982 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods13, 845–848 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol.37, 451–460 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lönnberg, T. et al. Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves Th1/Tfh fate bifurcation in malaria. Sci. Immunol.2, eaal2192 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Tritschler, S. et al. Concepts and limitations for learning developmental trajectories from single cell genomics. Development146, dev170506 (2019).

Article 
PubMed 

Google Scholar 

Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol.32, 381–386 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ruijtenberg, S. & van den Heuvel, S. Coordinating cell proliferation and differentiation: antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle15, 196–212 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Rougny, A., Paulevé, L., Teboul, M. & Delaunay, F. A detailed map of coupled circadian clock and cell cycle with qualitative dynamics validation. BMC Bioinformatics22, 240 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Gupta, K. et al. Single-cell analysis reveals a hair follicle dermal niche molecular differentiation trajectory that begins prior to morphogenesis. Dev. Cell48, 17–31 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Sood, P. et al. Modular, cascade-like transcriptional program of regeneration in stentor. eLife11, e80778 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhu, H., Zhao, S. D., Ray, A., Zhang, Y. & Li, X. A comprehensive temporal patterning gene network in Drosophila medulla neuroblasts revealed by single-cell RNA sequencing. Nat. Commun.13, 1247 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Li, J. et al. Systematic reconstruction of molecular cascades regulating GP development using single-cell RNA-seq. Cell Rep.15, 1467–1480 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Huizing, G.-J., Peyré, G. & Cantini, L. Optimal transport improves cell–cell similarity inference in single-cell omics data. Bioinformatics38, 2169–2177 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bellazzi, R., Codegoni, A., Gualandi, S., Nicora, G. & Vercesi, E. The gene mover’s distance: single-cell similarity via optimal transport. Preprint at arXiv 10.48550/arXiv.2102.01218 (2021).

Orlova, D. Y. et al. Earth mover’s distance (EMD): a true metric for comparing biomarker expression levels in cell populations. PLoS ONE11, e0151859 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Schiebinger, G. et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell176, 928–943 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhang, S., Afanassiev, A., Greenstreet, L., Matsumoto, T. & Schiebinger, G. Optimal transport analysis reveals trajectories in steady-state systems. PLoS Comput. Biol.17, e1009466 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Cang, Z. & Nie, Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat. Commun.11, 2084 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Moriel, N. et al. NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport. Nat. Protoc.16, 4177–4200 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Demetci, P., Santorella, R., Sandstede, B., Noble, W. S. & Singh, R. SCOT: single-cell multi-omics alignment with optimal transport. J. Comput. Biol.29, 3–18 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Coifman, R. R. & Lafon, S. Diffusion maps. Appl. Comput. Harmon. Anal.21, 5–30 (2006).

Article 

Google Scholar 

Singer, A. From graph to manifold Laplacian: the convergence rate. App. Comput. Harmon. Anal.21, 128–134 (2006).

Article 

Google Scholar 

Tacke, F. & Randolph, G. J. Migratory fate and differentiation of blood monocyte subsets. Immunobiology211, 609–618 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Van de Veerdonk, F. L. & Netea, M. G. Diversity: a hallmark of monocyte society. Immunity33, 289–291 (2010).

Article 
PubMed 

Google Scholar 

Patel, A. A. et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med.214, 1913–1923 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chitu, V. & Stanley, E. R. Colony-stimulating factor-1 in immunity and inflammation. Curr. Opin. Immunol.18, 39–48 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Imhof, B. A. & Dunon, D. Leukocyte migration and adhesion. Adv. Immunol.58, 345–416 (1995).

CAS 
PubMed 

Google Scholar 

Ghebrehiwet, B., Hosszu, K. K., Valentino, A., Ji, Y. & Peerschke, E. I. Monocyte expressed macromolecular C1 and C1q receptors as molecular sensors of danger: implications in SLE. Front. Immunol.5, 278 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Heger, L. et al. Subsets of CD1c+ DCs: dendritic cell versus monocyte lineage. Front. Immunol.11, 559166 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Higashi, N. et al. The macrophage C-type lectin specific for galactose/N-acetylgalactosamine is an endocytic receptor expressed on monocyte-derived immature dendritic cells. J. Biol. Chem.277, 20686–20693 (2002).

Article 
CAS 
PubMed 

Google Scholar 

Myung, P., Andl, T. & Atit, R. The origins of skin diversity: lessons from dermal fibroblasts. Development149, dev200298 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chen, D., Jarrell, A., Guo, C., Lang, R. & Atit, R. Dermal β-catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation. Development139, 1522–1533 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Fu, J. & Hsu, W. Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis. J. Invest. Dermatol.133, 890–898 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Hastie, T. J. Generalized Additive Models, pp. 249–307 (Routledge, 2017).

Wood, S. mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation (University of Bath, 2012).

Pott, S. & Lieb, J. D. Single-cell ATAC–seq: strength in numbers. Genome Biol.16, 172 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science353, 78–82 (2016).

Article 
PubMed 

Google Scholar 

Macaulay, I. C., Ponting, C. P. & Voet, T. Single-cell multiomics: multiple measurements from single cells. Trends Genet.33, 155–168 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Balasubramanian, M. & Schwartz, E. L. The isomap algorithm and topological stability. Science295, 7 (2002).

Article 
PubMed 

Google Scholar 

Bernstein, M., De Silva, V., Langford, J. C. & Tenenbaum, J. B. Graph Approximations to Geodesics on Embedded Manifolds Technical Report (Department of Psychology, Stanford University, 2000).

Dassule, H. R., Lewis, P., Bei, M., Maas, R. & McMahon, A. P. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development127, 4775–4785 (2000).

Article 
CAS 
PubMed 

Google Scholar 

Carpenter, A. C., Rao, S., Wells, J. M., Campbell, K. & Lang, R. A. Generation of mice with a conditional null allele for Wntless. Genesis48, 554–558 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol.33, 495–502 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Santos, A., Wernersson, R. & Jensen, L. J. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res.43, D1140–D1144 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Liu, Z. et al. Reconstructing cell cycle pseudo time-series via single-cell transcriptome data. Nat. Commun.8, 22 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Günesdogan, U., Jäckle, H. & Herzig, A. Histone supply regulates s phase timing and cell cycle progression. eLife3, e02443 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol.37, 1482–1492 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wood, S. & Wood, M. S. Package ‘mgcv’. scholar.google.com/citations?view_op=view_citation&hl=it&user=EskiIyEAAAAJ&citation_for_view=EskiIyEAAAAJ:kh2fBNsKQNwC (2015).

Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol.38, 1408–1414 (2020).

Article 
CAS 
PubMed 

Google Scholar 

>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Nature.com – https://www.nature.com/articles/s41587-024-02186-3

Exit mobile version