Mahdessian, D. et al. Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. Nature590, 649–654 (2021).
Article
CAS
PubMed
Google Scholar
Scialdone, A. et al. Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods85, 54–61 (2015).
Article
CAS
PubMed
Google Scholar
Skinner, S. O. et al. Single-cell analysis of transcription kinetics across the cell cycle. eLife5, e12175 (2016).
Article
PubMed
PubMed Central
Google Scholar
Cao, J., Zhou, W., Steemers, F., Trapnell, C. & Shendure, J. Sci-fate characterizes the dynamics of gene expression in single cells. Nat. Biotechnol.38, 980–988 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu, R. et al. Decomposing a deterministic path to mesenchymal niche formation by two intersecting morphogen gradients. Dev. Cell57, 1053–1067 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Macaulay, I. C. et al. Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells. Cell Rep.14, 966–977 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chu, L.-F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol.17, 173 (2016).
Article
PubMed
PubMed Central
Google Scholar
Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep.18, 3227–3241 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics19, 477 (2018).
Article
PubMed
PubMed Central
Google Scholar
Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature566, 496–502 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol.20, 59 (2019).
Article
PubMed
PubMed Central
Google Scholar
Van den Berge, K. et al. Trajectory-based differential expression analysis for single-cell sequencing data. Nat. Commun.11, 1201 (2020).
Article
PubMed
PubMed Central
Google Scholar
Deconinck, L., Cannoodt, R., Saelens, W., Deplancke, B. & Saeys, Y. Recent advances in trajectory inference from single-cell omics data. Curr. Opin. Syst. Biol.27, 100344 (2021).
Article
CAS
Google Scholar
Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol.37, 547–554 (2019).
Article
CAS
PubMed
Google Scholar
Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Methods19, 159–170 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods14, 979–982 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods13, 845–848 (2016).
Article
CAS
PubMed
Google Scholar
Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol.37, 451–460 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lönnberg, T. et al. Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves Th1/Tfh fate bifurcation in malaria. Sci. Immunol.2, eaal2192 (2017).
Article
PubMed
PubMed Central
Google Scholar
Tritschler, S. et al. Concepts and limitations for learning developmental trajectories from single cell genomics. Development146, dev170506 (2019).
Article
PubMed
Google Scholar
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol.32, 381–386 (2014).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruijtenberg, S. & van den Heuvel, S. Coordinating cell proliferation and differentiation: antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle15, 196–212 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Rougny, A., Paulevé, L., Teboul, M. & Delaunay, F. A detailed map of coupled circadian clock and cell cycle with qualitative dynamics validation. BMC Bioinformatics22, 240 (2021).
Article
PubMed
PubMed Central
Google Scholar
Gupta, K. et al. Single-cell analysis reveals a hair follicle dermal niche molecular differentiation trajectory that begins prior to morphogenesis. Dev. Cell48, 17–31 (2019).
Article
CAS
PubMed
Google Scholar
Sood, P. et al. Modular, cascade-like transcriptional program of regeneration in stentor. eLife11, e80778 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu, H., Zhao, S. D., Ray, A., Zhang, Y. & Li, X. A comprehensive temporal patterning gene network in Drosophila medulla neuroblasts revealed by single-cell RNA sequencing. Nat. Commun.13, 1247 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Li, J. et al. Systematic reconstruction of molecular cascades regulating GP development using single-cell RNA-seq. Cell Rep.15, 1467–1480 (2016).
Article
CAS
PubMed
Google Scholar
Huizing, G.-J., Peyré, G. & Cantini, L. Optimal transport improves cell–cell similarity inference in single-cell omics data. Bioinformatics38, 2169–2177 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellazzi, R., Codegoni, A., Gualandi, S., Nicora, G. & Vercesi, E. The gene mover’s distance: single-cell similarity via optimal transport. Preprint at arXiv 10.48550/arXiv.2102.01218 (2021).
Orlova, D. Y. et al. Earth mover’s distance (EMD): a true metric for comparing biomarker expression levels in cell populations. PLoS ONE11, e0151859 (2016).
Article
PubMed
PubMed Central
Google Scholar
Schiebinger, G. et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell176, 928–943 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang, S., Afanassiev, A., Greenstreet, L., Matsumoto, T. & Schiebinger, G. Optimal transport analysis reveals trajectories in steady-state systems. PLoS Comput. Biol.17, e1009466 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Cang, Z. & Nie, Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat. Commun.11, 2084 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Moriel, N. et al. NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport. Nat. Protoc.16, 4177–4200 (2021).
Article
CAS
PubMed
Google Scholar
Demetci, P., Santorella, R., Sandstede, B., Noble, W. S. & Singh, R. SCOT: single-cell multi-omics alignment with optimal transport. J. Comput. Biol.29, 3–18 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Coifman, R. R. & Lafon, S. Diffusion maps. Appl. Comput. Harmon. Anal.21, 5–30 (2006).
Article
Google Scholar
Singer, A. From graph to manifold Laplacian: the convergence rate. App. Comput. Harmon. Anal.21, 128–134 (2006).
Article
Google Scholar
Tacke, F. & Randolph, G. J. Migratory fate and differentiation of blood monocyte subsets. Immunobiology211, 609–618 (2006).
Article
CAS
PubMed
Google Scholar
Van de Veerdonk, F. L. & Netea, M. G. Diversity: a hallmark of monocyte society. Immunity33, 289–291 (2010).
Article
PubMed
Google Scholar
Patel, A. A. et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med.214, 1913–1923 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chitu, V. & Stanley, E. R. Colony-stimulating factor-1 in immunity and inflammation. Curr. Opin. Immunol.18, 39–48 (2006).
Article
CAS
PubMed
Google Scholar
Imhof, B. A. & Dunon, D. Leukocyte migration and adhesion. Adv. Immunol.58, 345–416 (1995).
CAS
PubMed
Google Scholar
Ghebrehiwet, B., Hosszu, K. K., Valentino, A., Ji, Y. & Peerschke, E. I. Monocyte expressed macromolecular C1 and C1q receptors as molecular sensors of danger: implications in SLE. Front. Immunol.5, 278 (2014).
Article
PubMed
PubMed Central
Google Scholar
Heger, L. et al. Subsets of CD1c+ DCs: dendritic cell versus monocyte lineage. Front. Immunol.11, 559166 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Higashi, N. et al. The macrophage C-type lectin specific for galactose/N-acetylgalactosamine is an endocytic receptor expressed on monocyte-derived immature dendritic cells. J. Biol. Chem.277, 20686–20693 (2002).
Article
CAS
PubMed
Google Scholar
Myung, P., Andl, T. & Atit, R. The origins of skin diversity: lessons from dermal fibroblasts. Development149, dev200298 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen, D., Jarrell, A., Guo, C., Lang, R. & Atit, R. Dermal β-catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation. Development139, 1522–1533 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu, J. & Hsu, W. Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis. J. Invest. Dermatol.133, 890–898 (2013).
Article
CAS
PubMed
Google Scholar
Hastie, T. J. Generalized Additive Models, pp. 249–307 (Routledge, 2017).
Wood, S. mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation (University of Bath, 2012).
Pott, S. & Lieb, J. D. Single-cell ATAC–seq: strength in numbers. Genome Biol.16, 172 (2015).
Article
PubMed
PubMed Central
Google Scholar
Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science353, 78–82 (2016).
Article
PubMed
Google Scholar
Macaulay, I. C., Ponting, C. P. & Voet, T. Single-cell multiomics: multiple measurements from single cells. Trends Genet.33, 155–168 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Balasubramanian, M. & Schwartz, E. L. The isomap algorithm and topological stability. Science295, 7 (2002).
Article
PubMed
Google Scholar
Bernstein, M., De Silva, V., Langford, J. C. & Tenenbaum, J. B. Graph Approximations to Geodesics on Embedded Manifolds Technical Report (Department of Psychology, Stanford University, 2000).
Dassule, H. R., Lewis, P., Bei, M., Maas, R. & McMahon, A. P. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development127, 4775–4785 (2000).
Article
CAS
PubMed
Google Scholar
Carpenter, A. C., Rao, S., Wells, J. M., Campbell, K. & Lang, R. A. Generation of mice with a conditional null allele for Wntless. Genesis48, 554–558 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol.33, 495–502 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Santos, A., Wernersson, R. & Jensen, L. J. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res.43, D1140–D1144 (2015).
Article
CAS
PubMed
Google Scholar
Liu, Z. et al. Reconstructing cell cycle pseudo time-series via single-cell transcriptome data. Nat. Commun.8, 22 (2017).
Article
PubMed
PubMed Central
Google Scholar
Günesdogan, U., Jäckle, H. & Herzig, A. Histone supply regulates s phase timing and cell cycle progression. eLife3, e02443 (2014).
Article
PubMed
PubMed Central
Google Scholar
Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol.37, 1482–1492 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood, S. & Wood, M. S. Package ‘mgcv’. scholar.google.com/citations?view_op=view_citation&hl=it&user=EskiIyEAAAAJ&citation_for_view=EskiIyEAAAAJ:kh2fBNsKQNwC (2015).
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol.38, 1408–1414 (2020).
Article
CAS
PubMed
Google Scholar
>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Nature.com – https://www.nature.com/articles/s41587-024-02186-3