Human microbiome cultivation expands with AI

Human microbiome cultivation expands with AI

An automated system for picking bacterial colonies is used to create a biobank of personalized microbiomes.

Research on microbiomes is driven today by metagenomic sequencing, but microbial cell culture remains indispensable for obtaining reference genomes and for generating mechanistic and functional insights. Traditional methods for culturing microbes are labor intensive and intrinsically difficult to scale to high numbers of samples and high numbers of isolates per sample. A study in Nature Biotechnology by Huang et al.1 describes an automated process to systematically isolate large numbers of different bacterial taxa present in microbiomes through machine learning analyses of colony morphology. The cultivation workflow represents a substantial advance in the toolkit for exploring microbiome diversity. The authors also provide a publicly available culture biobank of 20 human microbiomes and new assemblies of ~1,200 microbial genomes, providing a rich resource for studying the diversity of individual human microbiomes.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

209,00 € per year

only 17,42 € per issue

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Summary of the CAMII workflow for automated and targeted high-throughput culturomics from single microbiome samples.

References

Huang, Y. et al. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01674-2 (2023).

Article 
PubMed 

Google Scholar 

Larsen, J. et al. Euro Surveill.22, 30573 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Lagier, J. C. et al. Nat. Microbiol.1, 16203 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Jiang, M. Z. et al. Sci. Rep.12, 18145 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bellais, S. et al. Microbiome10, 24 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Pasolli, E. et al. Cell176, 649–662.e20 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Watterson, W. J. et al. eLife9, e56998 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Thomas, A. M. & Segata, N. BMC Biol.17, 48 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Sousa, A. M., Machado, I., Nicolau, A. & Pereira, M. O. J. Microbiol. Methods95, 327–335 (2013).

Article 
PubMed 

Google Scholar 

Download references

Author information

Authors and Affiliations

Department CIBIO, University of Trento, Trento, Italy

Marta Selma-Royo, Nicola Segata & Liviana Ricci

Corresponding author

Correspondence to
Nicola Segata.

Ethics declarations

Competing interests

The authors declare no competing interests.

About this article

Cite this article

Selma-Royo, M., Segata, N. & Ricci, L. Human microbiome cultivation expands with AI.
Nat Biotechnol (2023). https://doi.org/10.1038/s41587-023-01852-2

Download citation

Published: 22 June 2023

DOI: https://doi.org/10.1038/s41587-023-01852-2

>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Nature.com – https://www.nature.com/articles/s41587-023-01852-2

Exit mobile version