* . *
  • About
  • Advertise
  • Privacy & Policy
  • Contact
Thursday, July 3, 2025
Earth-News
  • Home
  • Business
  • Entertainment
    BTS Announce Their Big Return and Yes, They Already Have Some Major Plans in the Works – Yahoo

    BTS Announce Their Big Return and Yes, They Already Have Some Major Plans in the Works – Yahoo

    Nantucket Dance Festival opens July 8 – The Inquirer and Mirror

    Nantucket Dance Festival Launches with Thrilling Performances Beginning July 8

    A Secret Society, Ritualistic Killings, and a Century-Old Curse Netflix and YRF Entertainment’s ‘Mandala Murders’ Premieres July 25 – About Netflix

    A Secret Society, Ritualistic Killings, and a Century-Old Curse: Dive into the Chilling World of ‘Mandala Murders’ Premiering July 25

    Susquehanna Raises Penn Entertainment Inc. (PENN) Price Target. – Yahoo Finance

    Susquehanna Raises Price Target for Penn Entertainment Inc. (PENN)

    George Lopez is coming to Spokane – KXLY.com

    George Lopez is coming to Spokane – KXLY.com

    Netflix unveils Dallas immersive venue for fans of hit shows like ‘Squid Game,’ ‘Stranger Things’ – Houston Chronicle

    Step Inside Netflix’s New Dallas Immersive Experience Featuring Hits Like ‘Squid Game’ and ‘Stranger Things

  • General
  • Health
  • News

    Cracking the Code: Why China’s Economic Challenges Aren’t Shaking Markets, Unlike America’s” – Bloomberg

    Trump’s Narrow Window to Spread the Truth About Harris

    Trump’s Narrow Window to Spread the Truth About Harris

    Israel-Gaza war live updates: Hamas leader Ismail Haniyeh assassinated in Iran, group says

    Israel-Gaza war live updates: Hamas leader Ismail Haniyeh assassinated in Iran, group says

    PAP Boss to Niger Delta Youths, Stay Away from the Protest

    PAP Boss to Niger Delta Youths, Stay Away from the Protest

    Court Restricts Protests In Lagos To Freedom, Peace Park

    Court Restricts Protests In Lagos To Freedom, Peace Park

    Fans React to Jazz Jennings’ Inspiring Weight Loss Journey

    Fans React to Jazz Jennings’ Inspiring Weight Loss Journey

    Trending Tags

    • Trump Inauguration
    • United Stated
    • White House
    • Market Stories
    • Election Results
  • Science
  • Sports
  • Technology
    Inspira Technologies Secures Landmark $22.5M Deal: Major Revenue Breakthrough After FDA Clearance – Stock Titan

    Inspira Technologies Secures Landmark $22.5M Deal: Major Revenue Breakthrough After FDA Clearance – Stock Titan

    Meiwu Technology Company Limited and Shenzhen Zhinuo – GlobeNewswire

    Meiwu Technology Company Limited and Shenzhen Zhinuo – GlobeNewswire

    Owls inspire new revolutionary noise reduction technology – KTEN

    Owls inspire new revolutionary noise reduction technology – KTEN

    New center coming to Mizzou will focus on energy research and technology – Columbia Missourian

    Mizzou Launches Innovative New Center Dedicated to Energy Research and Technology

    Mirrors in space and underwater curtains: can technology buy us enough time to save the Arctic ice caps? – The Guardian

    Can Technology Like Space Mirrors and Underwater Curtains Buy Us Time to Save the Arctic Ice Caps?

    Naples restaurant owner prepares for hurricane season with new flood technology – Fox4Now.com

    Naples restaurant owner prepares for hurricane season with new flood technology – Fox4Now.com

    Trending Tags

    • Nintendo Switch
    • CES 2017
    • Playstation 4 Pro
    • Mark Zuckerberg
No Result
View All Result
  • Home
  • Business
  • Entertainment
    BTS Announce Their Big Return and Yes, They Already Have Some Major Plans in the Works – Yahoo

    BTS Announce Their Big Return and Yes, They Already Have Some Major Plans in the Works – Yahoo

    Nantucket Dance Festival opens July 8 – The Inquirer and Mirror

    Nantucket Dance Festival Launches with Thrilling Performances Beginning July 8

    A Secret Society, Ritualistic Killings, and a Century-Old Curse Netflix and YRF Entertainment’s ‘Mandala Murders’ Premieres July 25 – About Netflix

    A Secret Society, Ritualistic Killings, and a Century-Old Curse: Dive into the Chilling World of ‘Mandala Murders’ Premiering July 25

    Susquehanna Raises Penn Entertainment Inc. (PENN) Price Target. – Yahoo Finance

    Susquehanna Raises Price Target for Penn Entertainment Inc. (PENN)

    George Lopez is coming to Spokane – KXLY.com

    George Lopez is coming to Spokane – KXLY.com

    Netflix unveils Dallas immersive venue for fans of hit shows like ‘Squid Game,’ ‘Stranger Things’ – Houston Chronicle

    Step Inside Netflix’s New Dallas Immersive Experience Featuring Hits Like ‘Squid Game’ and ‘Stranger Things

  • General
  • Health
  • News

    Cracking the Code: Why China’s Economic Challenges Aren’t Shaking Markets, Unlike America’s” – Bloomberg

    Trump’s Narrow Window to Spread the Truth About Harris

    Trump’s Narrow Window to Spread the Truth About Harris

    Israel-Gaza war live updates: Hamas leader Ismail Haniyeh assassinated in Iran, group says

    Israel-Gaza war live updates: Hamas leader Ismail Haniyeh assassinated in Iran, group says

    PAP Boss to Niger Delta Youths, Stay Away from the Protest

    PAP Boss to Niger Delta Youths, Stay Away from the Protest

    Court Restricts Protests In Lagos To Freedom, Peace Park

    Court Restricts Protests In Lagos To Freedom, Peace Park

    Fans React to Jazz Jennings’ Inspiring Weight Loss Journey

    Fans React to Jazz Jennings’ Inspiring Weight Loss Journey

    Trending Tags

    • Trump Inauguration
    • United Stated
    • White House
    • Market Stories
    • Election Results
  • Science
  • Sports
  • Technology
    Inspira Technologies Secures Landmark $22.5M Deal: Major Revenue Breakthrough After FDA Clearance – Stock Titan

    Inspira Technologies Secures Landmark $22.5M Deal: Major Revenue Breakthrough After FDA Clearance – Stock Titan

    Meiwu Technology Company Limited and Shenzhen Zhinuo – GlobeNewswire

    Meiwu Technology Company Limited and Shenzhen Zhinuo – GlobeNewswire

    Owls inspire new revolutionary noise reduction technology – KTEN

    Owls inspire new revolutionary noise reduction technology – KTEN

    New center coming to Mizzou will focus on energy research and technology – Columbia Missourian

    Mizzou Launches Innovative New Center Dedicated to Energy Research and Technology

    Mirrors in space and underwater curtains: can technology buy us enough time to save the Arctic ice caps? – The Guardian

    Can Technology Like Space Mirrors and Underwater Curtains Buy Us Time to Save the Arctic Ice Caps?

    Naples restaurant owner prepares for hurricane season with new flood technology – Fox4Now.com

    Naples restaurant owner prepares for hurricane season with new flood technology – Fox4Now.com

    Trending Tags

    • Nintendo Switch
    • CES 2017
    • Playstation 4 Pro
    • Mark Zuckerberg
No Result
View All Result
Earth-News
No Result
View All Result
Home Science

Pierre de Fermat’s Link to a High School Student’s Prime Math Proof

November 24, 2023
in Science
Pierre de Fermat’s Link to a High School Student’s Prime Math Proof
Share on FacebookShare on Twitter

Like many math students, I had dreams of mathematical greatness. I thought I was close once. A difficult algebra problem in college kept me working late into the night. After hours of struggle, I felt a breakthrough coming. I deftly manipulated expressions. I factored, multiplied and simplified, until my discovery finally revealed itself:

$latex 1 + 1=2$.

I couldn’t help but laugh. The world already knew that $latex 1 + 1=2$, so “Honner’s theorem” was not to be. And although many young mathematicians have experienced the disappointment of the not-quite-breakthrough, the remarkable story of Daniel Larsen keeps the dream alive.

Larsen was a high school student in 2022 when he proved a result about a certain kind of number that had eluded mathematicians for decades. He proved that Carmichael numbers — a curious kind of not-quite-prime number — could be found more frequently than was previously known, establishing a new theorem that will forever be associated with his work. So, what are Carmichael numbers? To answer that, we need to go back in time.

Pierre de Fermat has his name on one of the most famous theorems in mathematics. For over 300 years, Fermat’s Last Theorem stood as the ultimate symbol of unachievable mathematical greatness. In the 1600s, Fermat scribbled a note about his proposed theorem in a book he was reading, claiming to know how to prove it without providing any details. Mathematicians attempted to solve the problem themselves until the 1990s, when Andrew Wiles finally proved it using new techniques discovered hundreds of years after Fermat died.

But it’s Fermat’s less famous “little theorem” that relates to Carmichael numbers. Here’s one way to state it:

Given a prime number $latex p$, then for any integer $latex a$, the quantity $latex a^p – a$ is divisible by $latex p$.

For example, take the prime $latex p=11$ and the integer $latex a=2$. Fermat’s little theorem says that $latex 2^{11} – 2=2046$ is divisible by 11, and it is: $latex 2046 div 11=186$. Or take $latex p=7$ and $latex a=4$: $latex 4^7 – 4=16380=7 times 2340$, so $latex 4^7 – 4$ is indeed divisible by 7.

Unlike with Fermat’s Last Theorem, it didn’t take 300 years to resolve his little theorem. Leonhard Euler published a proof less than a century later. And because it’s about prime numbers, people found ways to use it.

One way to use Fermat’s little theorem is to show that a number is not a prime. Let’s say you’re wondering if 21 is prime or not. If 21 were prime, then according to Fermat’s little theorem, for any integer $latex a$, $latex a^{21}$ – $latex a$ would have to be divisible by 21. But if you try out some values of $latex a$ you see that this doesn’t work. For example, $latex 2^{21} – 2=2097150$, which is not a multiple of 21. Therefore, because it doesn’t satisfy Fermat’s little theorem, 21 can’t be a prime.

This may seem like a silly way to check if a number is prime. After all, we know $latex 21=3 times 7$. But checking whether large numbers are prime is a time-consuming and important task in modern mathematics, so mathematicians are always looking for shortcuts. To that end, mathematicians have wondered if the converse of Fermat’s little theorem might be true.

What’s the converse of a theorem? You may remember from math class that a theorem can be thought of as a conditional statement of the form “if P then Q.” A theorem says that if the P part (the antecedent or hypothesis) is true, then the Q part (the consequent or conclusion) must also be true. The converse of a theorem is the statement you get when you switch the antecedent and consequent. So the converse of “If P then Q” is the statement “If Q then P.”

Let’s consider the Pythagorean theorem. We’re often told that it says $latex a^2 + b^2=c^2$. But this isn’t quite right. The Pythagorean theorem is really a conditional statement: It says that if a right triangle has side lengths $latex a$, $latex b$ and $latex c$, with $latex c$ being the length of the hypotenuse, then $latex a^2 + b^2=c^2$. So what’s its converse? It says that if a triangle’s side lengths $latex a$, $latex b$ and $latex c$ satisfy the equation $latex a^2 + b^2=c^2$, then it’s a right triangle.

It’s tempting to think that the converse of a theorem is always true, and many a student has fallen into that trap. The converse of the Pythagorean theorem happens to be true, which lets us conclude that a triangle with side lengths 9, 40 and 41 must be a right triangle since $latex 9^2 + 40^2=41^2$. But the converse of a true statement need not be true: For example, while it’s true that if $latex x$ is a positive number, then $latex x^2$ is positive, the converse — if $latex x^2$ is a positive number, then $latex x$ is positive — isn’t, since $latex (-1)^2$ is positive but −1 itself isn’t.

It’s good mathematical practice to explore the converse of a statement, and mathematicians looking for primality tests wanted to know if the converse of Fermat’s little theorem was true. The converse says that, given an integer $latex q$, if the number $latex a^q – a$ is divisible by $latex q$ for any integer $latex a$, then $latex q$ must be a prime number. If this were true, it would sidestep some of the computational grunt work of checking whether $latex q$ is divisible by any numbers other than 1 and itself. As is so often the case in mathematics, this one question led to new questions, which ultimately led to some new mathematical ideas.

When you start exploring the converse of Fermat’s little theorem, you’ll discover that it’s true for a lot of numbers. For example, for any integer $latex a$, the number $latex a^2 – a$ is divisible by 2. You can see this by factoring $latex a^2 – a$ as $latex a times (a-1)$. Since a and $latex a − 1$ are consecutive integers, one of them has to be even, and so their product must be divisible by 2.

Similar arguments show that $latex a^3 – a$ is always divisible by 3 and $latex a^5 – a$ is always divisible by 5 (see the exercises below for more details). So the converse of Fermat’s little theorem holds for 3 and 5. The converse tells us what we expect for small non-prime numbers as well. If we use it to check whether 4 is prime or not, we’ll compute $latex 2^4 – 2$ and observe that 14 is not divisible by 4.

In fact, you can check all the way up to the number 561 and everything will point to the converse of Fermat’s little theorem being true. Prime numbers less than 561 divide $latex a^p – a$ for every a, and non-primes less than 561 don’t. But that changes at 561. With some slightly advanced number theory it can be shown that $latex a^{561} – a$ is always divisible by 561, so if the converse of Fermat’s little theorem were true, then 561 should be a prime. But it’s not: $latex 561=3 × 11 × 17$. So the converse of Fermat’s little theorem is false.

Mathematicians call numbers like 561 “pseudoprime” because they satisfy some conditions associated with being prime (like dividing $latex a^p – a$ for all a) but aren’t actually prime numbers. More counterexamples to the converse of Fermat’s little theorem have been found — the next three are 1,105, 1,729 and 2,465. These became known as Carmichael numbers, named after the American mathematician Robert Carmichael. After they were discovered, new questions popped up: Are there other ways to identify Carmichael numbers? Do they have any other special properties? Are there infinitely many of them? If so, how frequently do they occur?

It was this last question that ultimately caught the attention of Daniel Larsen. Mathematicians had proved that there were indeed infinitely many Carmichael numbers, but to show this they had to construct Carmichael numbers that were very far apart. This left open the question of how these infinitely many Carmichael numbers are distributed along the number line. Are they always far apart by their nature, or might they occur with more frequency and regularity than this initial proof showed?

Such questions about pseudoprimes are reminiscent of similar and important questions about the primes themselves. Two thousand years ago, Euclid proved that there are infinitely many prime numbers, but it took much longer to understand how the primes are distributed throughout the number line. In the 1800s, Bertrand’s postulate showed that for any $latex n> 3$, there is always a prime number between $latex n$ and $latex 2n$. This gives us some idea of how often to expect primes as we make our way along the number line.

Mathematicians wondered if some version of Bertrand’s postulate was true for Carmichael numbers. Daniel Larsen wondered, too, and building on the work of some famous modern mathematicians — the Fields medalists James Maynard and Terence Tao, among others — he turned his curiosity into a new result about how Carmichael numbers are distributed. And while young mathematicians probably shouldn’t expect to achieve as much while completing tonight’s homework, Daniel Larsen’s hard work, perseverance and success should inspire them to push forward, even if they’re re-proving something we already know.

>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Quanta Magazine – https://www.quantamagazine.org/pierre-de-fermats-link-to-a-high-school-students-prime-math-proof-20231122/

Tags: Fermat’sPierrescience
Previous Post

ANC councillor accused of statutory rape of two boys denied bail

Next Post

Wānaka is not loving it: Residents fight plans for fast food outlet

Stellantis Revives SRT: High-Performance Street and Racing Division Makes a Triumphant Return

July 3, 2025
Josh Hart Delivers Promise to Fans After Knicks’ Recent Move – Yahoo Sports

Josh Hart Delivers Promise to Fans After Knicks’ Recent Move – Yahoo Sports

July 3, 2025
LensToLens: Wetlands guard bird species from plateau to urban landscape – Xinhua

How Wetlands Safeguard Bird Species Across Plateaus and Urban Landscapes

July 3, 2025
Commentary: Vatican defends science from politics, ideology and misinformation – The Salt Lake Tribune

Vatican Takes a Bold Stand: Defending Science from Politics, Ideology, and Misinformation

July 2, 2025
Scientists Merged 3 Human Brains by Thought Alone – Popular Mechanics

Scientists Achieve Mind-Blowing Feat by Merging Three Human Brains Through Thought Alone

July 3, 2025
Retired woman shares inside look at lifestyle after moving into unconventional tiny home: ‘The best decision I’ve ever made’ – The Cool Down

Retired Woman Reveals Life-Changing Joys of Living in an Unconventional Tiny Home: “The Best Decision I’ve Ever Made

July 2, 2025
​​World Rural Development Day: Refugee-Led Farming Projects That Are Feeding the World – USA for UNHCR

​​World Rural Development Day: Refugee-Led Farming Projects That Are Feeding the World – USA for UNHCR

July 2, 2025
Trump’s economy: A weak link in MAGA’s chain – The Hill

Trump’s economy: A weak link in MAGA’s chain – The Hill

July 2, 2025
BTS Announce Their Big Return and Yes, They Already Have Some Major Plans in the Works – Yahoo

BTS Announce Their Big Return and Yes, They Already Have Some Major Plans in the Works – Yahoo

July 2, 2025
About 17 Million More People Could be Uninsured due to the Big Beautiful Bill and other Policy Changes – KFF

How the Big Beautiful Bill and Policy Changes Could Leave 17 Million More People Uninsured

July 2, 2025

Categories

Archives

July 2025
MTWTFSS
 123456
78910111213
14151617181920
21222324252627
28293031 
« Jun    
Earth-News.info

The Earth News is an independent English-language daily published Website from all around the World News

Browse by Category

  • Business (20,132)
  • Ecology (702)
  • Economy (728)
  • Entertainment (21,616)
  • General (15,681)
  • Health (9,767)
  • Lifestyle (732)
  • News (22,149)
  • People (729)
  • Politics (735)
  • Science (15,946)
  • Sports (21,226)
  • Technology (15,712)
  • World (709)

Recent News

Stellantis Revives SRT: High-Performance Street and Racing Division Makes a Triumphant Return

July 3, 2025
Josh Hart Delivers Promise to Fans After Knicks’ Recent Move – Yahoo Sports

Josh Hart Delivers Promise to Fans After Knicks’ Recent Move – Yahoo Sports

July 3, 2025
  • About
  • Advertise
  • Privacy & Policy
  • Contact

© 2023 earth-news.info

No Result
View All Result

© 2023 earth-news.info

No Result
View All Result

© 2023 earth-news.info

Go to mobile version