Programming tumor evolution with selection gene drives to proactively combat drug resistance

Programming tumor evolution with selection gene drives to proactively combat drug resistance

Navin, N. E. The first five years of single-cell cancer genomics and beyond. Genome Res. 25, 1499–1507 (2015).

CAS 
PubMed 

Google Scholar

Schmitt, M. W. et al. Single-molecule sequencing reveals patterns of pre-existing drug resistance that suggest treatment strategies in Philadelphia-positive leukemias. Clin. Cancer Res. 24, 5321–5334 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar

Frankell, A. M. et al. The evolution of lung cancer and impact of subclonal selection in TRACERx. Nature 616, 525–533 (2023).

CAS 
PubMed 

Google Scholar

Martínez-Ruiz, C. et al. Genomic–transcriptomic evolution in lung cancer and metastasis. Nature 616, 543–552 (2023).

PubMed 

Google Scholar

Song, P. et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nat. Biomed. Eng. 6, 232–245 (2022).

CAS 
PubMed 

Google Scholar

Short, N. J. et al. Ultra-accurate duplex sequencing for the assessment of pretreatment ABL1 kinase domain mutations in Ph+ ALL. Blood Cancer J. 10, 1–9 (2020).

Google Scholar

Leighow, S. M. & Pritchard, J. R. The risks of perpetuating an evolutionary arms race in drug discovery. Evol. Med. Public Health 2019, 64–65 (2019).

PubMed 
PubMed Central 

Google Scholar

Leonetti, A. et al. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer 121, 725–737 (2019).

PubMed 

Google Scholar

Bozic, I. et al. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2, e00747 (2013).

PubMed 

Google Scholar

Goldie, J. H. & Coldman, A. J. The genetic origin of drug resistance in neoplasms: implications for systemic therapy. Cancer Res. 44, 3643–3653 (1984).

CAS 
PubMed 

Google Scholar

Frei, E. Curative cancer chemotherapy. Cancer Res. 45, 6523–6537 (1985).

PubMed 

Google Scholar

Palmer, A. C., Chidley, C. & Sorger, P. K. A curative combination cancer therapy achieves high fractional cell killing through low cross-resistance and drug additivity. eLife 8, e50036 (2019).

PubMed 
PubMed Central 

Google Scholar

Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019).

CAS 
PubMed 

Google Scholar

Meyers, R. M. et al. Computational correction of copy-number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar

US Food and Drug Administration. FDA Approves Osimertinib with Chemotherapy for EGFR-Mutated Non-small Cell Lung Cancer (FDA, 2024).

Corrie, P. G. Cytotoxic chemotherapy: clinical aspects. Medicine 36, 24–28 (2008).

Google Scholar

Wang, Y. et al. Clinical effectiveness and clinical toxicity associated with platinum-based doublets in the first-line setting for advanced non-squamous non-small cell lung cancer in Chinese patients: a retrospective cohort study. BMC Cancer 14, 940 (2014).

PubMed 
PubMed Central 

Google Scholar

Noronha, V. et al. Gefitinib versus gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR-mutated lung cancer. J. Clin. Oncol. 38, 124–136 (2020).

CAS 
PubMed 

Google Scholar

Planchard, D. et al. Osimertinib with or without chemotherapy in EGFR-mutated advanced NSCLC. N. Engl. J. Med. 389, 1935–1948 (2023).

CAS 
PubMed 

Google Scholar

Offin, M. et al. Tumor mutation burden and efficacy of EGFR-tyrosine kinase inhibitors in patients with EGFR-mutant lung cancers. Clin. Cancer Res. 25, 1063–1069 (2019).

CAS 
PubMed 

Google Scholar

Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar

Nasu, Y. et al. Suicide gene therapy with adenoviral delivery of HSV-tK gene for patients with local recurrence of prostate cancer after hormonal therapy. Mol. Ther. J. Am. Soc. Gene Ther. 15, 834–840 (2007).

CAS 

Google Scholar

Topf, N., Worgall, S., Hackett, N. R. & Crystal, R. G. Regional ‘pro-drug’ gene therapy: intravenous administration of an adenoviral vector expressing the E. coli cytosine deaminase gene and systemic administration of 5-fluorocytosine suppresses growth of hepatic metastasis of colon carcinoma. Gene Ther. 5, 507–513 (1998).

CAS 
PubMed 

Google Scholar

Patel, P. A phase I/II clinical trial in localized prostate cancer of an adenovirus expressing nitroreductase with CB1954 [correction of CB1984]. Mol. Ther. J. Am. Soc. Gene Ther. 17, 1292–1299 (2009).

CAS 

Google Scholar

Rainov, N. G. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum. Gene Ther. 11, 2389–2401 (2000).

CAS 
PubMed 

Google Scholar

Sangro, B. et al. A phase I clinical trial of thymidine kinase-based gene therapy in advanced hepatocellular carcinoma. Cancer Gene Ther. 17, 837–843 (2010).

CAS 
PubMed 

Google Scholar

Sagara, T. et al. Successful gene therapy requires targeting the vast majority of cancer cells. Cancer Biol. Ther. 21, 946–953 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar

Windbichler, N. et al. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473, 212–215 (2011).

CAS 
PubMed 

Google Scholar

Allen, G. M. & Lim, W. A. Rethinking cancer targeting strategies in the era of smart cell therapeutics. Nat. Rev. Cancer 22, 693–702 (2022).

CAS 
PubMed 

Google Scholar

Zhang, J., Kale, V. & Chen, M. Gene-directed enzyme prodrug therapy. AAPS J. 17, 102–110 (2014).

PubMed 

Google Scholar

ElOjeimy, S. et al. FasL gene therapy: a new therapeutic modality for head and neck cancer. Cancer Gene Ther. 13, 739–745 (2006).

CAS 
PubMed 

Google Scholar

Touraine, R. L., Ishii-Morita, H., Ramsey, W. J. & Blaese, R. M. The bystander effect in the HSVtk/ganciclovir system and its relationship to gap junctional communication. Gene Ther. 5, 1705–1711 (1998).

CAS 
PubMed 

Google Scholar

Rollins, C. T. et al. A ligand-reversible dimerization system for controlling protein–protein interactions. Proc. Natl Acad. Sci. USA 97, 7096–7101 (2000).

CAS 
PubMed 

Google Scholar

Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

PubMed 

Google Scholar

Iuliucci, J. D. et al. Intravenous safety and pharmacokinetics of a novel dimerizer drug, AP1903, in healthy volunteers. J. Clin. Pharmacol. 41, 870–879 (2001).

CAS 
PubMed 

Google Scholar

Jura, N. et al. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137, 1293–1307 (2009).

PubMed 

Google Scholar

Lin, J. H. Pharmacokinetic and pharmacodynamic variability: a daunting challenge in drug therapy. Curr. Drug Metab. 8, 109–136 (2007).

CAS 
PubMed 

Google Scholar

Subbiah, V. et al. Pan-cancer efficacy of pralsetinib in patients with RET fusion-positive solid tumors from the phase 1/2 ARROW trial. Nat. Med. 28, 1640–1645 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar

Subbiah, V. et al. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann. Oncol. 32, 261–268 (2021).

CAS 
PubMed 

Google Scholar

Cloughesy, T. F. et al. Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC. Neuro Oncol. 20, 1383–1392 (2018).

CAS 
PubMed 

Google Scholar

Pandha, H. S. et al. Genetic prodrug activation therapy for breast cancer: a phase I clinical trial of erbB-2-directed suicide gene expression. J. Clin. Oncol. 17, 2180–2189 (1999).

CAS 
PubMed 

Google Scholar

Vermes, A., Guchelaar, H.-J. & Dankert, J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother. 46, 171–179 (2000).

CAS 
PubMed 

Google Scholar

Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 330–338 (2003).

CAS 
PubMed 

Google Scholar

Fuchita, M. et al. Bacterial cytosine deaminase mutants created by molecular engineering show improved 5-fluorocytosine-mediated cell killing in vitro and in vivo. Cancer Res. 69, 4791–4799 (2009).

CAS 
PubMed 

Google Scholar

Pardini, B. et al. 5-Fluorouracil-based chemotherapy for colorectal cancer and MTHFR/MTRR genotypes. Br. J. Clin. Pharmacol. 72, 162–163 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar

Gilad, Y., Gellerman, G., Lonard, D. M. & O’Malley, B. W. Drug combination in cancer treatment—from cocktails to conjugated combinations. Cancers 13, 669 (2021).

CAS 
PubMed 

Google Scholar

Freytag, S. O. et al. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer. Cancer Res. 63, 7497–7506 (2003).

CAS 
PubMed 

Google Scholar

Upadhyay, R. et al. A critical role for fas-mediated off-target tumor killing in T cell immunotherapy. Cancer Discov. 11, 599–613 (2021).

CAS 
PubMed 

Google Scholar

Janopaul-Naylor, J. R., Shen, Y., Qian, D. C. & Buchwald, Z. S. The abscopal effect: a review of pre-clinical and clinical advances. Int. J. Mol. Sci. 22, 11061 (2021).

CAS 
PubMed 

Google Scholar

Roth, J. A. et al. Retrovirus-mediated wild-type P53 gene transfer to tumors of patients with lung cancer. Nat. Med. 2, 985–991 (1996).

CAS 
PubMed 

Google Scholar

Soria, J.-C. et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2018).

CAS 
PubMed 

Google Scholar

Kamiyama, D. et al. Versatile protein tagging in cells with split fluorescent protein. Nat. Commun. 7, 11046 (2016).

CAS 
PubMed 

Google Scholar

Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar

Dempster, J. M. et al. Extracting biological insights from the Project Achilles genome-scale CRISPR screens in cancer cell lines. Preprint at bioRxiv https://doi.org/10.1101/720243 (2019).

Zeng, H. et al. Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC. eLife 8, e50223 (2019).

PubMed 

Google Scholar

Maley, C. C., Reid, B. J. & Forrest, S. Cancer prevention strategies that address the evolutionary dynamics of neoplastic cells: simulating benign cell boosters and selection for chemosensitivity. Cancer Epidemiol. Biomark. Prev. 13, 1375–1384 (2004).

Google Scholar

Freeman, S. M. et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 53, 5274–5283 (1993).

CAS 
PubMed 

Google Scholar

Gatenby, R. A., Silva, A. S., Gillies, R. J. & Frieden, B. R. Adaptive therapy. Cancer Res. 69, 4894–4903 (2009).

CAS 
PubMed 
PubMed Central 

Google Scholar

Zhang, J., Cunningham, J. J., Brown, J. S. & Gatenby, R. A. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun. 8, 1816 (2017).

PubMed 
PubMed Central 

Google Scholar

Lin, K. H. et al. Using antagonistic pleiotropy to design a chemotherapy-induced evolutionary trap to target drug resistance in cancer. Nat. Genet. 52, 408–417 (2020).

CAS 
PubMed 

Google Scholar

Zhao, B. et al. Exploiting temporal collateral sensitivity in tumor clonal evolution. Cell 165, 234–246 (2016).

CAS 
PubMed 

Google Scholar

Chen, G. et al. Targeting the adaptability of heterogeneous aneuploids. Cell 160, 771–784 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar

Dalin, S., Grauman-Boss, B., Lauffenburger, D. A. & Hemann, M. T. Collateral responses to classical cytotoxic chemotherapies are heterogeneous and sensitivities are sparse. Sci. Rep. 12, 5453 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar

Körbelin, J. et al. Pulmonary targeting of adeno-associated viral vectors by next-generation sequencing-guided screening of random capsid displayed peptide libraries. Mol. Ther. 24, 1050–1061 (2016).

PubMed 
PubMed Central 

Google Scholar

Goertsen, D., Goeden, N., Flytzanis, N. C. & Gradinaru, V. Targeting the lung epithelium after intravenous delivery by directed evolution of underexplored sites on the AAV capsid. Mol. Ther. Methods Clin. Dev. 26, 331–342 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar

Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar

Nemunaitis, J. et al. A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Mol. Ther. J. Am. Soc. Gene Ther. 18, 429–434 (2010).

CAS 

Google Scholar

Liu, X., Ding, J. & Meng, L. Oncogene-induced senescence: a double edged sword in cancer. Acta Pharmacol. Sin. 39, 1553–1558 (2018).

CAS 
PubMed 

Google Scholar

Kim, M.-Y. et al. Tumor self-seeding by circulating cancer cells. Cell 139, 1315–1326 (2009).

PubMed 

Google Scholar

Zhu, H. et al. Oncogene-induced senescence: from biology to therapy. Mech. Ageing Dev. 187, 111229 (2020).

CAS 
PubMed 

Google Scholar

Mack, E. T., Perez-Castillejos, R., Suo, Z. & Whitesides, G. M. Exact analysis of ligand-induced dimerization of monomeric receptors. Anal. Chem. 80, 5550–5555 (2008).

CAS 
PubMed 

Google Scholar

Wang, B. et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat. Protoc. 14, 756–780 (2019).

CAS 
PubMed 

Google Scholar

Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, 2000).

pritchardlabatpsu/SelectionGeneDrives: Selection Gene Drive Code Release v1.0. GitHub https://doi.org/10.5281/zenodo.10840332 (2024).

Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

CAS 
PubMed 

Google Scholar

Rodriguez de la Fuente, L., Law, A. M. K., Gallego-Ortega, D. & Valdes-Mora, F. Tumor dissociation of highly viable cell suspensions for single-cell omic analyses in mouse models of breast cancer. STAR Protoc. 2, 100841 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar

Leighow, S. M. et al. Programming tumor evolution with selection gene drives to prevent the emergence of drug resistance. Datasets. NCBI Bioproject. NCBI https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1081395 (2024).

>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Nature.com – https://www.nature.com/articles/s41587-024-02271-7

Exit mobile version