RNA interference in the era of nucleic acid therapeutics

RNA interference in the era of nucleic acid therapeutics

Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391, 806–811 (1998).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol.22, 96–118 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet.20, 89–108 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Baek, D. et al. The impact of microRNAs on protein output. Nature455, 64–71 (2008).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Obbard, D. J., Gordon, K. H., Buck, A. H. & Jiggins, F. M. The evolution of RNAi as a defence against viruses and transposable elements. Philos. Trans. R. Soc. Lond. B Biol. Sci.364, 99–115 (2009).

Article 
CAS 
PubMed 

Google Scholar 

Crooke, S. T., Witztum, J. L., Bennett, C. F. & Baker, B. F. RNA-targeted therapeutics. Cell Metab.27, 714–739 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Dominski, Z. & Kole, R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl Acad. Sci. USA90, 8673–8677 (1993).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gregory, R. I. et al. Human RISC couples MicroRNA biogenesis and posttranscriptional gene silencing. Cell123, 631–640 (2005).

Article 
CAS 
PubMed 

Google Scholar 

Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell101, 25–33 (2000).

Article 
CAS 
PubMed 

Google Scholar 

Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature404, 293–296 (2000).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Roberts, T. C. The microRNA machinery. Adv. Exp. Med. Biol.887, 15–30 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature466, 835–840 (2010).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Eichhorn, S. W. et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell56, 104–115 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science305, 1437–1441 (2004).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol.11, 599–606 (2004).

Article 
CAS 
PubMed 

Google Scholar 

Brown, C. R. et al. Investigating the pharmacodynamic durability of GalNAc–siRNA conjugates. Nucleic Acids Res.48, 11827–11844 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet.23, 265–280 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov.8, 129–138 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bowie, A. G. & Unterholzner, L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat. Rev. Immunol.8, 911–922 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bumcrot, D., Manoharan, M., Koteliansky, V. & Sah, D. W. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat. Chem. Biol.2, 711–719 (2006).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Titze-de-Almeida, R., David, C. & Titze-de-Almeida, S. S. The race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm. Res.34, 1339–1363 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Garba, A. O. & Mousa, S. A. Bevasiranib for the treatment of wet, age-related macular degeneration. Ophthalmol. Eye Dis.2, 75–83 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Eisenstein, M. Pharma’s roller-coaster relationship with RNA therapies. Nature574, S4–S6 (2019).

Article 
ADS 
CAS 

Google Scholar 

Bailey, A. L. & Cullis, P. R. Modulation of membrane fusion by asymmetric transbilayer distributions of amino lipids. Biochemistry33, 12573–12580 (1994).

Article 
CAS 
PubMed 

Google Scholar 

Semple, S. C. et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta1510, 152–166 (2001).

Article 
CAS 
PubMed 

Google Scholar 

Hafez, I. M., Maurer, N. & Cullis, P. R. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther.8, 1188–1196 (2001).

Article 
CAS 
PubMed 

Google Scholar 

Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature441, 111–114 (2006).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Judge, A. D., Bola, G., Lee, A. C. & MacLachlan, I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther.13, 494–505 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol.28, 172–176 (2010).

Article 
CAS 
PubMed 

Google Scholar 

Akinc, A. et al. Development of lipidoid–siRNA formulations for systemic delivery to the liver. Mol. Ther.17, 872–879 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA107, 1864–1869 (2010).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther.18, 1357–1364 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. Engl.51, 8529–8533 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther.25, 1467–1475 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Fitzgerald, K. et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet383, 60–68 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Coelho, T. et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med.369, 819–829 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med.379, 11–21 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater.6, 1074–1094 (2021).

Article 
ADS 

Google Scholar 

Szabó, G. T., Mahiny, A. J. & Vlatkovic, I. COVID-19 mRNA vaccines: platforms and current developments. Mol. Ther.30, 1850–1868 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther.21, 1570–1578 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther.26, 1509–1519 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhang, X. et al. Biodegradable amino-ester nanomaterials for Cas9 mRNA delivery in vitro and in vivo. ACS Appl. Mater. Interfaces9, 25481–25487 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Allerson, C. R. et al. Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem.48, 901–904 (2005).

Article 
CAS 
PubMed 

Google Scholar 

Morrissey, D. V. et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology41, 1349–1356 (2005).

Article 
CAS 
PubMed 

Google Scholar 

Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc.136, 16958–16961 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Butler, J. S. et al. Preclinical evaluation of RNAi as a treatment for transthyretin-mediated amyloidosis. Amyloid23, 109–118 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Stockert, R. J., Morell, A. G. & Scheinberg, I. H. Mammalian hepatic lectin. Science186, 365–366 (1974).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Steer, C. J. & Ashwell, G. Studies on a mammalian hepatic binding protein specific for asialoglycoproteins. Evidence for receptor recycling in isolated rat hepatocytes. J. Biol. Chem.255, 3008–3013 (1980).

Article 
CAS 
PubMed 

Google Scholar 

Stockert, R. J. et al. Endocytosis of asialoglycoprotein-enzyme conjugates by hepatocytes. Lab Invest.43, 556–563 (1980).

CAS 
PubMed 

Google Scholar 

Schwartz, A. L., Fridovich, S. E. & Lodish, H. F. Kinetics of internalization and recycling of the asialoglycoprotein receptor in a hepatoma cell line. J. Biol. Chem.257, 4230–4237 (1982).

Article 
CAS 
PubMed 

Google Scholar 

Rensen, P. C., van Leeuwen, S. H., Sliedregt, L. A., van Berkel, T. J. & Biessen, E. A. Design and synthesis of novel N-acetylgalactosamine-terminated glycolipids for targeting of lipoproteins to the hepatic asialoglycoprotein receptor. J. Med. Chem.47, 5798–5808 (2004).

Article 
CAS 
PubMed 

Google Scholar 

Huang, X., Leroux, J. C. & Castagner, B. Well-defined multivalent ligands for hepatocytes targeting via asialoglycoprotein receptor. Bioconjug. Chem.28, 283–295 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Rajeev, K. G. et al. Hepatocyte-specific delivery of siRNAs conjugated to novel non-nucleosidic trivalent N-acetylgalactosamine elicits robust gene silencing in vivo. ChemBioChem16, 903–908 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Matsuda, S. et al. siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes. ACS Chem. Biol.10, 1181–1187 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Zimmermann, T. S. et al. Clinical proof of concept for a novel hepatocyte-targeting GalNAc–siRNA conjugate. Mol. Ther.25, 71–78 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Judge, D. P. et al. Phase 3 multicenter study of revusiran in patients with hereditary transthyretin-mediated (hATTR) amyloidosis with cardiomyopathy (ENDEAVOUR). Cardiovasc. Drugs Ther.34, 357–370 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Nair, J. K. et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc–siRNA conjugates. Nucleic Acids Res.45, 10969–10977 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Foster, D. J. et al. Advanced siRNA designs further improve in vivo performance of GalNAc–siRNA conjugates. Mol. Ther.26, 708–717 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Habtemariam, B. A. et al. Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-acetylgalactosamine-small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin. Pharmacol. Ther.109, 372–382 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med.376, 1430–1440 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Janas, M. M. et al. Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat. Commun.9, 723 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 

Prakash, T. P. et al. Identification of metabolically stable 5′-phosphate analogs that support single-stranded siRNA activity. Nucleic Acids Res.43, 2993–3011 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Parmar, R. et al. 5′-(E)-Vinylphosphonate: a stable phosphate mimic can improve the RNAi activity of siRNA-GalNAc conjugates. ChemBioChem17, 985–989 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Brown, K. M. et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat. Biotechnol.40, 1500–1508 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Janas, M. M. et al. The nonclinical safety profile of GalNAc-conjugated RNAi therapeutics in subacute studies. Toxicol. Pathol.46, 735–745 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

McDougall, R. et al. The nonclinical disposition and pharmacokinetic/pharmacodynamic properties of N-acetylgalactosamine-conjugated small interfering RNA are highly predictable and build confidence in translation to human. Drug Metab. Dispos.50, 781–797 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Larsson, E., Sander, C. & Marks, D. mRNA turnover rate limits siRNA and microRNA efficacy. Mol. Syst. Biol.6, 433 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Agarwal, S. et al. Pharmacokinetics and pharmacodynamics of the small interfering ribonucleic acid, givosiran, in patients with acute hepatic porphyria. Clin. Pharmacol. Ther.108, 63–72 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Hu, B. et al. Therapeutic siRNA: state of the art. Signal Transduct. Target. Ther.5, 101 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Springer, A. D. & Dowdy, S. F. GalNAc–siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther.28, 109–118 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kawasaki, A. M. et al. Uniformly modified 2′-deoxy-2′-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J. Med. Chem.36, 831–841 (1993).

Article 
CAS 
PubMed 

Google Scholar 

Tobin, K. A. Macugen treatment for wet age-related macular degeneration. Insight31, 11–14 (2006).

PubMed 

Google Scholar 

McKenzie, R. et al. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N. Engl. J. Med.333, 1099–1105 (1995).

Article 
CAS 
PubMed 

Google Scholar 

Richardson, F. C. et al. An evaluation of the toxicities of 2′-fluorouridine and 2′-fluorocytidine-HCl in F344 rats and woodchucks (Marmota monax). Toxicol. Pathol.27, 607–617 (1999).

Article 
CAS 
PubMed 

Google Scholar 

Saleh, A. F. et al. 2′-O-(2-methoxyethyl) nucleosides are not phosphorylated or incorporated into the genome of human lymphoblastoid TK6 cells. Toxicol. Sci.163, 70–78 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Shen, W., Liang, X. H., Sun, H. & Crooke, S. T. 2′-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF. Nucleic Acids Res.43, 4569–4578 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Janas, M. M. et al. Safety evaluation of 2′-deoxy-2′-fluoro nucleotides in GalNAc–siRNA conjugates. Nucleic Acids Res.47, 3306–3320 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ray, K. K. et al. Long-term efficacy and safety of inclisiran in patients with high cardiovascular risk and elevated LDL cholesterol (ORION-3): results from the 4-year open-label extension of the ORION-1 trial. Lancet Diabetes Endocrinol.11, 109–119 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Vosberg, H. P. & Eckstein, F. Effect of deoxynucleoside phosphorothioates incorporated in DNA on cleavage by restriction enzymes. J. Biol. Chem.257, 6595–6599 (1982).

Article 
CAS 
PubMed 

Google Scholar 

Geary, R. S., Yu, R. Z. & Levin, A. A. Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr. Opin. Investig. Drugs2, 562–573 (2001).

CAS 
PubMed 

Google Scholar 

Burgers, P. M. J. & Eckstein, F. Synthesis of dinucleoside monophosphorothioates via addition of sulphur to phosphite triesters. Tetrahedron Lett.19, 3835–3838 (1978).

Article 

Google Scholar 

Crooke, S. T., Seth, P. P., Vickers, T. A. & Liang, X. H. The interaction of phosphorothioate-containing RNA targeted drugs with proteins is a critical determinant of the therapeutic effects of these Agents. J. Am. Chem. Soc.142, 14754–14771 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Frazier, K. S. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist’s perspective. Toxicol. Pathol.43, 78–89 (2015).

Article 
PubMed 

Google Scholar 

Janas, M. M. et al. Exposure to siRNA–GalNAc conjugates in systems of the standard test battery for genotoxicity. Nucleic Acid Ther.26, 363–371 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Ray, K. K. et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med.382, 1507–1519 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Valdmanis, P. N. et al. RNA interference-induced hepatotoxicity results from loss of the first synthesized isoform of microRNA-122 in mice. Nat. Med.22, 557–562 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature441, 537–541 (2006).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Zlatev, I. et al. Reversal of siRNA-mediated gene silencing in vivo. Nat. Biotechnol.36, 509–511 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol.21, 635–637 (2003).

Article 
CAS 
PubMed 

Google Scholar 

Jackson, A. L. et al. Widespread siRNA ‘off-target’ transcript silencing mediated by seed region sequence complementarity. RNA12, 1179–1187 (2006).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods3, 199–204 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Bramsen, J. B. et al. A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects. Nucleic Acids Res.38, 5761–5773 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Vaish, N. et al. Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs. Nucleic Acids Res.39, 1823–1832 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Schlegel, M. K. et al. From bench to bedside: improving the clinical safety of GalNAc–siRNA conjugates using seed-pairing destabilization. Nucleic Acids Res.50, 6656–6670 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gane, E. et al. Evaluation of RNAi therapeutics VIR-2218 and ALN-HBV for chronic hepatitis B: results from randomized clinical trials. J. Hepatol.79, 924–932 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Zhang, M. M., Bahal, R., Rasmussen, T. P., Manautou, J. E. & Zhong, X. B. The growth of siRNA-based therapeutics: updated clinical studies. Biochem. Pharmacol.189, 114432 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Grimm, D. Asymmetry in siRNA design. Gene Ther.16, 827–829 (2009).

Article 
CAS 
PubMed 

Google Scholar 

Biscans, A. et al. The chemical structure and phosphorothioate content of hydrophobically modified siRNAs impact extrahepatic distribution and efficacy. Nucleic Acids Res.48, 7665–7680 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kim, D. H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol.23, 222–226 (2005).

Article 
CAS 
PubMed 

Google Scholar 

Zhang, X., Goel, V. & Robbie, G. J. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis. J. Clin. Pharmacol.60, 573–585 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Setten, R. L., Rossi, J. J. & Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov.18, 421–446 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Bangalore, S., Breazna, A., DeMicco, D. A., Wun, C.-C. & Messerli, F. H. Visit-to-visit low-density lipoprotein cholesterol variability and risk of cardiovascular outcomes. J. Am. Coll. Cardiol.65, 1539–1548 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Fields, T. R. The challenges of approaching and managing gout. Rheum. Dis. Clin. North Am.45, 145–157 (2019).

Article 
PubMed 

Google Scholar 

Flack, J. M. Epidemiology and unmet needs in hypertension. J. Manag. Care Pharm.13, 2–8 (2007).

PubMed 

Google Scholar 

Ceral, J. et al. Difficult-to-control arterial hypertension or uncooperative patients? The assessment of serum antihypertensive drug levels to differentiate non-responsiveness from non-adherence to recommended therapy. Hypertens. Res.34, 87–90 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Tomaszewski, M. et al. High rates of non-adherence to antihypertensive treatment revealed by high-performance liquid chromatography-tandem mass spectrometry (HP LC–MS/MS) urine analysis. Heart100, 855–861 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Nelson, M. R. Moving the goalposts for blood pressure—time to act. N. Engl. J. Med.385, 1328–1329 (2021).

Article 
PubMed 

Google Scholar 

Balakrishnan, K. N. et al. Multiple gene targeting siRNAs for down regulation of Immediate Early-2 (Ie2) and DNA polymerase genes mediated inhibition of novel rat cytomegalovirus (strain All-03). Virol. J.17, 164 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Alterman, J. F. et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat. Biotechnol.37, 884–894 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chernikov, I. V., Vlassov, V. V. & Chernolovskaya, E. L. Current development of siRNA bioconjugates: from research to the clinic. Front. Pharmacol.10, 444 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet.101, 5–22 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bellenguez, C. et al. A robust clustering algorithm for identifying problematic samples in genome-wide association studies. Bioinformatics28, 134–135 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Jonsson, T. et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature488, 96–99 (2012).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Helgadottir, A. et al. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nat. Genet.48, 634–639 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov.12, 581–594 (2013).

Article 
CAS 
PubMed 

Google Scholar 

King, E. A., Davis, J. W. & Degner, J. F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet.15, e1008489 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med.12, e1001779 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Szustakowski, J. D. et al. Advancing human genetics research and drug discovery through exome sequencing of the UK Biobank. Nat. Genet.53, 942–948 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Nguyen, P. A., Born, D. A., Deaton, A. M., Nioi, P. & Ward, L. D. Phenotypes associated with genes encoding drug targets are predictive of clinical trial side effects. Nat. Commun.10, 1579 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 

Diogo, D. et al. Phenome-wide association studies across large population cohorts support drug target validation. Nat. Commun.9, 4285 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 

Minikel, E. V. et al. Evaluating drug targets through human loss-of-function genetic variation. Nature581, 459–464 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Khan, F. A. et al. CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases. Oncotarget7, 52541–52552 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Herrera-Carrillo, E., Gao, Z. & Berkhout, B. CRISPR therapy towards an HIV cure. Brief. Funct. Genomics19, 201–208 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med.385, 493–502 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Wittrup, A. & Lieberman, J. Knocking down disease: a progress report on siRNA therapeutics. Nat. Rev. Genet.16, 543–552 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Egeberg, O. Thrombophilia caused by inheritable deficiency of blood antithrombin. Scand. J. Clin. Lab. Invest.17, 92 (1965).

Article 
CAS 
PubMed 

Google Scholar 

Pasi, K. J. et al. Targeting of antithrombin in hemophilia A or B with RNAi therapy. N. Engl. J. Med.377, 819–828 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med.376, 41–51 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Wong, C. H., Siah, K. W. & Lo, A. W. Estimation of clinical trial success rates and related parameters. Biostatistics20, 273–286 (2019).

Article 
MathSciNet 
PubMed 

Google Scholar 

Chan, A. et al. Preclinical development of a subcutaneous ALAS1 RNAi therapeutic for treatment of hepatic porphyrias using circulating RNA quantification. Mol. Ther. Nucleic Acids4, e263 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Balwani, M. et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med.382, 2289–2301 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med.384, 1216–1226 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Wright, R. S. et al. Pooled patient-level analysis of inclisiran trials in patients with familial hypercholesterolemia or atherosclerosis. J. Am. Coll. Cardiol.77, 1182–1193 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Adams, D. et al. Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: a randomized clinical trial. Amyloid30, 1–9 (2023).

Article 
PubMed 

Google Scholar 

Zhu, Y. et al. RNA-based therapeutics: an overview and prospectus. Cell Death Dis.13, 644 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Singh, R. N. & Singh, N. N. Mechanism of splicing regulation of spinal muscular atrophy genes. Adv. Neurobiol.20, 31–61 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ackermann, E. J. et al. Suppressing transthyretin production in mice, monkeys and humans using 2nd-generation antisense oligonucleotides. Amyloid23, 148–157 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Bartel, D. P. Metazoan microRNAs. Cell173, 20–51 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Napoli, C., Lemieux, C. & Jorgensen, R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell.2, 279–289 (1990).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature432, 173–178 (2004).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Nature.com – https://www.nature.com/articles/s41587-023-02105-y

Exit mobile version