The challenges and promise of sweat sensing

The challenges and promise of sweat sensing

References

Vinik, A. I., Nevoret, M., Casellini, C. & Parson, H. Neurovascular function and sudorimetry in health and disease. Curr.Diab.Rep.13, 517–532 (2013).

Google Scholar 

Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol.37, 407–419 (2019).

Article 
PubMed 
CAS 

Google Scholar 

Baker, L. B. & Wolfe, A. S. Physiological mechanisms determining eccrine sweat composition. Eur. J. Appl. Physiol.120, 719–752 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

LeGrys, V., Briscoe, D. & McColley, S. Sweat Testing: Specimen Collection and Quantitative Chloride Analysis; Approved Guideline 4th edn (Clinical and Laboratory Standards Institute, 2019).

Hussain, J. N., Mantri, N. & Cohen, M. M. Working up a good sweat — the challenges of standardising sweat collection for metabolomics analysis. Clin. Biochem. Rev.38, 13–34 (2017).

PubMed 
PubMed Central 

Google Scholar 

Cizza, G. et al. Elevated neuroimmune biomarkers in sweat patches and plasma of premenopausal women with major depressive disorder in remission: the POWER Study. Biol. Psychiatry64, 907–911 (2008).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Sempionatto, J. R., Moon, J.-M. & Wang, J. Touch-based fingertip blood-free reliable glucose monitoring: personalized data processing for predicting blood glucose concentrations. ACS Sens.6, 1875–1883 (2021).

Article 
PubMed 
CAS 

Google Scholar 

Torrente-Rodríguez, R. M. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter2, 921–937 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Busch, R. On the history of cystic fibrosis. Acta Univ. Carol. Med.36, 13–15 (1990).

CAS 

Google Scholar 

Pérez-Frías, J. et al. The history of cystic fibrosis. Open J.Pediatr.Child Health4, 001–006 (2019).

Google Scholar 

Quinton, P. M. Physiological basis of cystic fibrosis: a historical perspective. Physiol. Rev.79, S3–S22 (1999).

Article 
PubMed 
CAS 

Google Scholar 

Darling, R. C., Disant’agnese, P. A., Perera, G. A. & Andersen, D. H. Electrolyte abnormalities of the sweat in fibrocystic disease of the pancreas. Am. J. Med. Sci.225, 67–70 (1953).

Article 
PubMed 
CAS 

Google Scholar 

Barbero, G. J., Kim, I. C. & Mcgavran, J. A simplified technique for the sweat test in the diagnosis of fibrocystic disease of the pancreas. Pediatrics18, 189–192 (1956).

Article 
PubMed 
CAS 

Google Scholar 

Gibson, E. & Cooke, E. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics23, 545–549 (1959).

Webster, H. L. & Rundell, C. A. Laboratory diagnosis of cystic fibrosis. Crit. Rev. Clin. Lab. Sci.18, 313–338 (1982).

Article 

Google Scholar 

Sato, K. in Reviews of Physiology, Biochemistry and Pharmacology Vol. 79 (eds Adrian, R. H. et al.) 51–131 (Springer, 1977).

Sato, K., Feibleman, C. & Dobson, R. L. The electrolyte composition of pharmacologically and thermally stimulated sweat: a comparative study. J.Invest.Dermatol.55, 433–438 (1970).

CAS 

Google Scholar 

Sato, K. & Dobson, R. L. Regional and individual variations in the function of the human eccrine sweat gland. J.Invest.Dermatol.54, 443–449 (1970).

CAS 

Google Scholar 

Sato, K. Sweat induction from an isolated eccrine sweat gland. Am. J. Physiol.225, 1147–1152 (1973).

Article 
PubMed 
CAS 

Google Scholar 

Drexelius, A., Fehr, D., Vescoli, V., Heikenfeld, J. & Bonmarin, M. A simple non-contact optical method to quantify in-vivo sweat gland activity and pulsation. In IEEE Transactions on Biomedical Engineering 2638–2645 (IEEE, 2022).

Yanagawa, S., Yokozeki, H. & Sato, K. Origin of periodic acid–Schiff-reactive glycoprotein in human eccrine sweat. J. Appl. Physiol.60, 1615–1622 (1986).

Article 
PubMed 
CAS 

Google Scholar 

Nicolaidis, S. & Sivadjian, J. High-frequency pulsatile discharge of human sweat glands: myoepithelial mechanism. J. Appl. Physiol.32, 86–90 (1972).

Article 
PubMed 
CAS 

Google Scholar 

Ogawa, T. & Sugenoya, J. Pulsatile sweating and sympathetic sudomotor activity. Jpn. J. Physiol.43, 275–289 (1993).

Article 
PubMed 
CAS 

Google Scholar 

Schwartz, I. L. & Thaysen, J. H. Excretion of sodium and potassium in human sweat. J. Clin. Invest.35, 114–120 (1956).

Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature6, 211–259 (2019).

Article 

Google Scholar 

Quinton, P. M. Cystic fibrosis: lessons from the sweat gland. Physiology22, 212–225 (2007).

Article 
PubMed 
CAS 

Google Scholar 

Nadel, E. R. Control of sweating rate while exercising in the heat. Med. Sci. Sports11, 31–35 (1979).

PubMed 
CAS 

Google Scholar 

Nadel, E. R., Bullard, R. W. & Stolwijk, J. A. Importance of skin temperature in the regulation of sweating. J. Appl. Physiol.31, 80–87 (1971).

Article 
PubMed 
CAS 

Google Scholar 

Shibasaki, M. & Crandall, C. G. Mechanisms and controllers of eccrine sweating in humans. Front. Biosci. (Schol. Ed.)2, 685–696 (2010).

PubMed 

Google Scholar 

Shibasaki, M., Secher, N. H., Selmer, C., Kondo, N. & Crandall, C. G. Central command is capable of modulating sweating from non-glabrous human skin. J. Physiol.553, 999–1004 (2003).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Hu, Y., Converse, C., Lyons, M. C. & Hsu, W. H. Neural control of sweat secretion: a review. Br. J. Dermatol.178, 1246–1256 (2018).

Article 
PubMed 
CAS 

Google Scholar 

Simmers, P., Li, S. K., Kasting, G. & Heikenfeld, J. Prolonged and localized sweat stimulation by iontophoretic delivery of the slowly-metabolized cholinergic agent carbachol. J. Dermatol. Sci.89, 40–51 (2018).

Article 
PubMed 
CAS 

Google Scholar 

Souza, S. L., Graça, G. & Oliva, A. Characterization of sweat induced with pilocarpine, physical exercise, and collected passively by metabolomic analysis. Skin Res. Technol.24, 187–195 (2018).

Article 
PubMed 
CAS 

Google Scholar 

Sato, K., Kang, W. H., Saga, K. & Sato, K. T. Biology of sweat glands and their disorders. I. Normal sweat gland function. J. Am. Acad. Dermatol.20, 537–563 (1989).

Article 
PubMed 
CAS 

Google Scholar 

Sonner, Z. et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics9, 031301 (2015).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Sato, F., Takemura, T., Hibino, T. & Sato, K. Lectin binding glycoproteins in human eccrine sweat. J. Invest. Dermatol.88, 515–515 (1987).

Macroduct Sweat Collection System (Model 3700) Instruction/Service Manual (Wescor, 2004).

Huestis, M. A. et al. Sweat testing for cocaine, codeine and metabolites by gas chromatography–mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl.733, 247–264 (1999).

Article 
PubMed 
CAS 

Google Scholar 

Brueck, A., Iftekhar, T., Stannard, A. B., Yelamarthi, K. & Kaya, T. A real-time wireless sweat rate measurement system for physical activity monitoring. Sensors18, 533 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Katchman, B. A., Zhu, M., Blain Christen, J. & Anderson, K. S. Eccrine sweat as a biofluid for profiling immune biomarkers. Proteomics Clin. Appl.12, 1800010 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Matzeu, G., Fay, C., Vaillant, A., Coyle, S. & Diamond, D. A wearable device for monitoring sweat rates via image analysis. IEEE Trans. Biomed. Eng.63, 1672–1680 (2016).

Article 
PubMed 

Google Scholar 

Mayaudon, H., Miloche, P.-O. & Bauduceau, B. A new simple method for assessing sudomotor function: relevance in type 2 diabetes. Diabetes Metab.36, 450–454 (2010).

Article 
PubMed 
CAS 

Google Scholar 

Baker, L. B. et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci. Adv.6, eabe3929 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Baker, L. B. et al. Sweating rate and sweat chloride concentration of elite male basketball players measured with a wearable microfluidic device versus the standard absorbent patch method. Int. J. Sport Nutr. Exerc. Metab.1, 342–349 (2022).

Article 

Google Scholar 

Jia, W. et al. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem.85, 6553–6560 (2013).

Article 
PubMed 
CAS 

Google Scholar 

Guinovart, T. J., Bandodkar, A. R., Windmiller, J. J., Andrade, F. & Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst138, 7031–7038 (2013).

Article 
PubMed 
CAS 

Google Scholar 

Bandodkar, A. J. et al. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron.54, 603–609 (2014).

Article 
PubMed 
CAS 

Google Scholar 

Huang, X. et al. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small10, 3083–3090 (2014).

Article 
PubMed 
CAS 

Google Scholar 

Rose, D. P. et al. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Biomed. Eng.62, 1457–1465 (2015).

Article 
PubMed 

Google Scholar 

Glennon, T. et al. ‘SWEATCH’: a wearable platform for harvesting and analysing sweat sodium content. Electroanalysis28, 1283–1289 (2016).

Article 
CAS 

Google Scholar 

Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature529, 509–514 (2016).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med.8, 366ra165 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Choi, J., Kang, D., Han, S., Kim, S. B. & Rogers, J. A. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthc. Mater.6, 1601355 (2017).

Article 

Google Scholar 

Nyein, H. Y. Y. et al. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens.3, 944–952 (2018).

Article 
PubMed 
CAS 

Google Scholar 

Hauke, A. et al. Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation. LabChip18, 3750–3759 (2018).

CAS 

Google Scholar 

Nyein, H. Y. Y. et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun.12, 1823 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Tai, L.-C. et al. Methylxanthine drug monitoring with wearable sweat sensors. Adv. Mater.30, 1707442 (2018).

Article 

Google Scholar 

Tai, L.-C. et al. Wearable sweat band for noninvasive levodopa monitoring. NanoLett.19, 6346–6351 (2019).

CAS 

Google Scholar 

Ruwe, T. Diverse drug classes partition into human sweat: implications for both sweat fundamentals and for therapeutic drug monitoring. Ther. Drug Monit. 10.1097/FTD.0000000000001110 (2023).

Harshman, S. W. et al. The proteomic and metabolomic characterization of exercise-induced sweat for human performance monitoring: a pilot investigation. PLoS ONE13, e0203133 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kwon, K. et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat. Electron.4, 302–312 (2021).

Article 

Google Scholar 

Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv.5, eaav3294 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Heikenfeld, J. Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016. Electroanalysis28, 1242–1249 (2016).

Article 
CAS 

Google Scholar 

Moyen, N. E. et al. Accuracy of algorithm to non-invasively predict core body temperature using the Kenzen wearable device. Int. J. Environ. Res. Public Health18, 13126 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Tang, W. et al. Touch-based stressless cortisol sensing. Adv. Mater.33, 2008465 (2021).

Article 
CAS 

Google Scholar 

Lin, S. et al. Natural perspiration sampling and in situ electrochemical analysis with hydrogel micropatches for user-identifiable and wireless chemo/biosensing. ACS Sens.5, 93–102 (2020).

Article 
PubMed 
CAS 

Google Scholar 

Paul, B., Demuru, S., Lafaye, C., Saubade, M. & Briand, D. Printed iontophoretic-integrated wearable microfluidic sweat-sensing patch for on-demand point-of-care sweat analysis. Adv. Mater. Technol.6, 2000910 (2021).

Article 
CAS 

Google Scholar 

Sonner, Z., Wilder, E., Gaillard, T., Kasting, G. & Heikenfeld, J. Integrated sudomotor axon reflex sweat stimulation for continuous sweat analyte analysis with individuals at rest. LabChip17, 2550–2560 (2017).

CAS 

Google Scholar 

Peng, R. et al. A new oil/membrane approach for integrated sweat sampling and sensing: sample volumes reduced from μL’s to nL’s and reduction of analyte contamination from skin. LabChip16, 4415–4423 (2016).

CAS 

Google Scholar 

Reeder, J. T. et al. Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Sci. Adv.5, eaau6356 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Brebner, D. F. & Kerslake, D. McK. The time course of the decline in sweating produced by wetting the skin. J. Physiol.175, 295–302 (1964).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Twine, N. B. et al. Open nanofluidic films with rapid transport and no analyte exchange for ultra-low sample volumes. LabChip18, 2816–2825 (2018).

CAS 

Google Scholar 

Baker, L. B. Sweating rate and sweat sodium concentration in athletes: a review of methodology and intra/interindividual variability. Sports Med.47, 111–128 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Yuan, Z. et al. A multi-modal sweat sensing patch for cross-verification of sweat rate, total ionic charge, and Na+ concentration. LabChip19, 3179–3189 (2019).

CAS 

Google Scholar 

Wang, S. et al. An unconventional vertical fluidic-controlled wearable platform for synchronously detecting sweat rate and electrolyte concentration. Biosens. Bioelectron.210, 114351 (2022).

Article 
PubMed 
CAS 

Google Scholar 

Montain, S. J., Latzka, W. A. & Sawka, M. N. Control of thermoregulatory sweating is altered by hydration level and exercise intensity. J. Appl. Physiol.79, 1434–1439 (1995).

Article 
PubMed 
CAS 

Google Scholar 

Sawka, M. N. & Montain, S. J. Fluid and electrolyte supplementation for exercise heat stress. Am. J. Clin. Nutr.72, 564S–572S (2000).

Article 
PubMed 
CAS 

Google Scholar 

Nyein, H. Y. Y. et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv.5, eaaw9906 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Zhao, F. J. et al. Ultra-simple wearable local sweat volume monitoring patch based on swellable hydrogels. LabChip20, 168–174 (2019).

Google Scholar 

Doolittle, J., Walker, P., Mills, T. & Thurston, J. Hyperhidrosis: an update on prevalence and severity in the United States. Arch. Dermatol. Res.308, 743–749 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Korpelainen, J. T., Sotaniemi, K. A. & Myllylä, V. V. Asymmetric sweating in stroke: a prospective quantitative study of patients with hemispheral brain infarction. Neurology43, 1211–1214 (1993).

Article 
PubMed 
CAS 

Google Scholar 

Foster, K. G., Hey, E. N. & O’Connell, B. Sweat function in babies with defects of the central nervous system. Dev.Med. Child Neurol.11, 94 (2008).

Google Scholar 

Cheshire, W. P. & Freeman, R. Disorders of sweating. Semin. Neurol.23, 399–406 (2003).

Article 
PubMed 

Google Scholar 

Harker, M. Psychological sweating: a systematic review focused on aetiology and cutaneous response. Skin Pharmacol. Physiol.26, 92–100 (2013).

Article 
PubMed 
CAS 

Google Scholar 

Berglund, L. G. Comfort and humidity. ASHRAE J.40, 35–41 (1998).

Google Scholar 

Rousseau, C. R. & Bühlmann, P. Calibration-free potentiometric sensing with solid-contact ion-selective electrodes. TrAC Trends Anal. Chem.140, 116277 (2021).

Article 
CAS 

Google Scholar 

Bhide, A., Muthukumar, S., Saini, A. & Prasad, S. Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat. Sci. Rep.8, 6507 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Arroyo-Currás, N., Dauphin-Ducharme, P., Scida, K. & Chávez, J. L. From the beaker to the body: translational challenges for electrochemical, aptamer-based sensors. Anal. Methods12, 1288–1310 (2020).

Article 

Google Scholar 

Potyrailo, R. A., Conrad, R. C., Ellington, A. D. & Hieftje, G. M. Adapting selected nucleic acid ligands (aptamers) to biosensors. Anal. Chem.70, 3419–3425 (1998).

Article 
PubMed 
CAS 

Google Scholar 

Zhang, F., Xue, J., Shao, J. & Jia, L. Compilation of 222 drugs’ plasma protein binding data and guidance for study designs. Drug Discov. Today17, 475–485 (2012).

Article 
PubMed 
CAS 

Google Scholar 

Yuan, Y. et al. Oil-membrane protection of electrochemical sensors for fouling- and pH-insensitive detection of lipophilic analytes. ACS Appl. Mater. Interfaces13, 53553–53563 (2021).

Article 
PubMed 
CAS 

Google Scholar 

Shaver, A., Curtis, S. D. & Arroyo-Currás, N. Alkanethiol monolayer end groups affect the long-term operational stability and signaling of electrochemical, aptamer-based sensors in biological fluids. ACS Appl. Mater. Interfaces12, 11214–11223 (2020).

Article 
PubMed 
CAS 

Google Scholar 

Watkins, Z., Karajić, A., Young, T., White, R. & Heikenfeld, J. Week-long operation of electrochemical aptamer sensors: new insights into self-assembled monolayer degradation mechanisms and solutions for stability in biofluid at body temperature. ACS Sens. 8, 1119–1131 (2023).

Xu, J. & Lee, H. Anti-biofouling strategies for long-term continuous use of implantable biosensors. Chemosensors8, 66 (2020).

Article 
CAS 

Google Scholar 

Li, H., Dauphin-Ducharme, P., Ortega, G. & Plaxco, K. W. Calibration-free electrochemical biosensors supporting accurate molecular measurements directly in undiluted whole blood. J. Am. Chem. Soc.139, 11207–11213 (2017).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Das, S. K., Nayak, K. K., Krishnaswamy, P. R., Kumar, V. & Bhat, N. Review—electrochemistry and other emerging technologies for continuous glucose monitoring devices. ECS Sens. Plus1, 031601 (2022).

Article 

Google Scholar 

Troudt, B. K., Rousseau, C. R., Dong, X. I. N., Anderson, E. L. & Bühlmann, P. Recent progress in the development of improved reference electrodes for electrochemistry. Anal. Sci.38, 71–83 (2022).

Article 
PubMed 
CAS 

Google Scholar 

Pirovano, P. et al. A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta219, 121145 (2020).

Article 
PubMed 
CAS 

Google Scholar 

Forlenza, G. P., Kushner, T., Messer, L. H., Wadwa, R. P. & Sankaranarayanan, S. Factory-calibrated continuous glucose monitoring: how and why it works, and the dangers of reuse beyond approved duration of wear. Diabetes Technol. Ther.21, 222–229 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Dautta, M. et al. Tape-free, digital wearable band for exercise sweat rate monitoring. Adv. Mater. Technol. 8, 2201187 (2023).

Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl Acad. Sci. USA114, 4625–4630 (2017).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Klous, L., de Ruiter, C. J., Scherrer, S., Gerrett, N. & Daanen, H. A. M. The (in)dependency of blood and sweat sodium, chloride, potassium, ammonia, lactate and glucose concentrations during submaximal exercise. Eur. J. Appl. Physiol.121, 803–816 (2021).

Article 
PubMed 
CAS 

Google Scholar 

Wiorek, A., Parrilla, M., Cuartero, M. & Crespo, G. A. Epidermal patch with glucose biosensor: pH and temperature correction toward more accurate sweat analysis during sport practice. Anal. Chem.92, 10153–10161 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Francis, J., Stamper, I., Heikenfeld, J. & Gomez, E. F. Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement. LabChip19, 178–185 (2019).

CAS 

Google Scholar 

Moon, J.-M. et al. Non-invasive sweat-based tracking of l-dopa pharmacokinetic profiles following an oral tablet administration. Angew. Chem. Int. Ed. Engl.133, 19222–19226 (2021).

Article 

Google Scholar 

Montanga, W., Kligman, A. M. & Carlisle, K. S. Atlas of Normal Human Skin (Springer, 1992).

Illigens, B. M. W. & Gibbons, C. H. in Handbook of Clinical Neurology (eds Levin, K. H. & Chauvel, P.) Vol. 160, 419–433 (Elsevier, 2019).

Download references

>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Nature.com – https://www.nature.com/articles/s41587-023-02059-1

Exit mobile version