The chemistry of next-generation sequencing

The chemistry of next-generation sequencing

References

Sanger, F., Nicklen, F. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA74, 5463–5467 (1977).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tsien, R. Y., Ross, P., Fahnestock, M. & Johnston, A. DNA sequencing. Patent WO9106678A1 (1990).

Ronaghi, M., Uhlén, M. & Nyrén, P. A sequencing method based on real-time pyrophosphate. Science281, 363–365 (1998).

Article 
CAS 
PubMed 

Google Scholar 

International Human Genome Consortium. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001).

Article 

Google Scholar 

Venter, J. C. et al. The sequence of the human genome. Science291, 1304–1351 (2001).

Article 
CAS 
PubMed 

Google Scholar 

Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell129, 823–837 (2007).

Article 
CAS 
PubMed 

Google Scholar 

Johnson, G. D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein–DNA interactions. Science316, 1497–1502 (2007).

Article 
CAS 
PubMed 

Google Scholar 

Gupta, N. & Verma, V. K. Next-generation sequencing and its application: empowering in public health beyond reality. In Microbial Technology for the Welfare of Society: Microorganisms for Sustainability (ed. Arora, P.) Vol. 17 (Springer, 2019).

Willson, J. Sequencing — the next generation. Nature Milestones S7 (2021).

Burgess, D. The dawn of personal genomes. Nature Milestones S9 (2021).

Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature456, 53–59 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wang, J. et al. The diploid genome sequence of an Asian individual. Nature456, 60–66 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Furey, W. S. et al. Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment. Biochemistry37, 2979–2990 (1998).

Article 
CAS 
PubMed 

Google Scholar 

Canard, B. & Sarfati, R. S. DNA polymerase fluorescent substrates with reversible 3′-tags. Gene148, 1–6 (1994).

Article 
CAS 
PubMed 

Google Scholar 

Welch, M. B. et al. Syntheses of nucleosides designed for combinatorial DNA sequencing. Chem. Eur. J.5, 951–960 (1999).

Article 
CAS 

Google Scholar 

Metzker, M. L. et al. Termination of DNA synthesis by novel 3′-modified deoxyribonucleoside 5′-triphosphates. Nucleic Acids Res.22, 4259–4267 (1994).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Turcatti, G., Romieu, A., Fedurco, M. & Tairi, A.-P. A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic Acids Res.36, e25 (2008).

Article 
PubMed 
PubMed Central 

Google Scholar 

Staudinger, H. & Meyer, J. Über neue organische phosphorverbindungen III. Phosphinmethylenderivate und phosphinimine. Helv. Chim. Acta2, 635 (1919).

Article 
CAS 

Google Scholar 

Balasubramanian, S. Sequencing nucleic acids: from chemistry to medicine. Chem. Commun.47, 7281–7286 (2011).

Article 
CAS 

Google Scholar 

Barnes, C., Balasubramanian, S., Liu, X., Swerdlow, H. & Milton, J. Labelled nucleotides. US patent 7,057,026 B2 (2002).

Sarfati, S. R. et al. Synthesis of fluorescent or biotinylated nucleoside compounds. Tetrahedron43, 3491–3497 (1987).

Article 
CAS 

Google Scholar 

Rosenblum, B. B. et al. New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Res.25, 4500–4504 (1997).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kiefer, J. R., Mao, C., Braman, J. C. & Beese, L. S. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature391, 304–307 (1998).

Article 
CAS 
PubMed 

Google Scholar 

Smith, G. P., Bailey, D. M. D., Sanches, R. M., Swerdlow, H. & Earnshaw, D. J. Modified polymerases for improved incorporation of nucleotide analogues. Patent WO 2005/024010 A1 (2003).

Ost, T. W. B., Smith, G. P., Balasubramanian, S., Rigatti, R. & Sanches, R. M. Improved polymerases. Patent WO 2006/120433 A1 (2006).

Smith, G. P., Bailey, D. M. D., Sanches-Kuiper, R. M., Swerdlow, H. & Earnshaw, D. J. Modified polymerases for improved incorporation of nucleotide analogues. US patent 8,852,910 B2 (2003).

Smith, M. et al. Modified molecular arrays. Patent WO 2005/065814 A1 (2005).

Kawashima, E., Farinelli, L. & Mayer, P. Method of nucleic acid amplification by extension of immobilized primers. Patent WO 9844151 (1998).

Mayer, P. Isothermal amplification of nucleic acids on a solid support. Patent WO 02/46456 (2001).

Robinson, R. A synthesis of tropinone. J. Chem. Soc.111, 762–768 (1917).

Rodriguez, A. R. et al. Total synthesis of cyercene A and the biomimetic synthesis of (±)-9,10-deoxytridachione and (±)-ocellapyrone. Tetrahedron63, 4500–4509 (2007).

Article 
CAS 

Google Scholar 

Wuts, P. G. M. & Greene, T. W. Greene’s Protective Groups in Organic Synthesis 4th edn (John Wiley & Sons, 2006).

Baran, P. S., Maimone, T. J. & Richter, J. M. Total synthesis of marine natural products without using protecting groups. Nature446, 404–408 (2007).

Article 
CAS 
PubMed 

Google Scholar 

Trost, B. M. The atom economy—a search for synthetic efficiency. Science254, 1471–1477 (1991).

Article 
CAS 
PubMed 

Google Scholar 

Koboldt, D. C., Meltz Steinberg, K., Larson, D. E., Wilson, R. K. & Mardis, E. R. The next-generation sequencing revolution and its impact on genomics. Cell155, 27–38 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Rodriguez, R. et al. Small molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol.8, 301–310 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Rodriguez, R. & Miller, K. M. Unravelling the genomic targets of small molecules using high-throughput sequencing. Nat. Rev. Genet.15, 783–796 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods5, 621–628 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science353, 78–82 (2016).

Article 
PubMed 

Google Scholar 

Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature550, 346–353 (2017).

Article 

Google Scholar 

Newby, G. A. et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature595, 295–302 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med.382, 727–733 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Veetil, A. T. & Krishnan, Y. In Advanced Chemical Biology (eds Hang, H. C., Pratt, M. R. & Prescher, J. A.) Ch. 2, pp 9–30 (Wiley-VCH, 2023).

Download references

>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Nature.com – https://www.nature.com/articles/s41587-023-01986-3

Exit mobile version