Gu, L.-Q., Cheley, S. & Bayley, H. Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore. Proc. Natl. Acad. Sci. USA100, 15498–15503 (2003).
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang, G., Willems, K., Soskine, M., Wloka, C. & Maglia, G. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun.8, 935 (2017).
Article
PubMed
PubMed Central
Google Scholar
Huang, G. et al. Electro-osmotic vortices promote the capture of folded proteins by PlyAB nanopores. Nano Lett.20, 3819–3827 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Asandei, A. et al. Electroosmotic trap against the electrophoretic force near a protein nanopore reveals peptide dynamics during capture and translocation. ACS Appl. Mater. Interfaces8, 13166–13179 (2016).
Article
CAS
PubMed
Google Scholar
Willems, K. et al. Engineering and modeling the electrophoretic trapping of a single protein inside a nanopore. ACS Nano13, 9980–9992 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Gubbiotti, A. et al. Electroosmosis in nanopores: computational methods and technological applications. Adv. Phys. X7, 2036638 (2022).
Google Scholar
Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single–amino acid resolution using nanopores. Science374, 1509–1513 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan, S. et al. Single molecule ratcheting motion of peptides in a Mycobacterium smegmatis porin A (MspA) nanopore. Nano Lett.21, 6703–6710 (2021).
Article
CAS
PubMed
Google Scholar
Chen, Z. et al. Controlled movement of ssDNA conjugated peptide through Mycobacterium smegmatis porin A (MspA) pore by a helicase motor for peptide sequencing application. Chem. Sci.12, 15750–15756 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosen, C. B., Rodriguez-Larrea, D. & Bayley, H. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat. Biotechnol.32, 179–181 (2014).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu, L. et al. Unidirectional single-file transport of full-length proteins through a nanopore. Nat. Biotechnol.41,1130–1139 (2023).
Article
CAS
PubMed
Google Scholar
Biesemans, A., Soskine, M. & Maglia, G. A protein rotaxane controls the translocation of proteins across a ClyA nanopore. Nano Lett.15, 6076–6081 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Aksimentiev, A. & Schulten, K. Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J.88, 3745–3761 (2005).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonome, E. L., Cecconi, F. & Chinappi, M. Electroosmotic flow through an α-hemolysin nanopore. Microfluid. Nanofluid.21,96 (2017).
Article
Google Scholar
Bétermier, F. et al. Single-sulfur atom discrimination of polysulfides with a protein nanopore for improved batteries. Commun. Mater.1, 59 (2020).
Article
Google Scholar
Di Muccio, G., Morozzo della Rocca, B. & Chinappi, M. Geometrically induced selectivity and unidirectional electroosmosis in uncharged nanopores. ACS Nano16, 8716–8728 (2022).
Article
PubMed
PubMed Central
Google Scholar
Raffy, S., Sassoon, N., Hofnung, M. & Betton, J.-M. Tertiary structure-dependence of misfolding substitutions in loops of the maltose-binding protein. Protein Sci.7, 2136–2142 (1998).
Article
CAS
PubMed
PubMed Central
Google Scholar
Fonin, A. V. et al. Spectral characteristics of the mutant form GGBP/H152C of D-glucose/D-galactose-binding protein labeled with fluorescent dye BADAN: influence of external factors. PeerJ2, e275 (2014).
Article
PubMed
PubMed Central
Google Scholar
Ohmae, E., Sasaki, Y. & Gekko, K. Effects of five-tryptophan mutations on structure, stability and function of Escherichia coli dihydrofolate reductase. J. Biochem.130, 439–447 (2001).
Article
CAS
PubMed
Google Scholar
Japrung, D., Henricus, M., Li, Q. H., Maglia, G. & Bayley, H. Urea facilitates the translocation of single-stranded DNA and RNA through the α-hemolysin nanopore. Biophys. J.98, 1856–1863 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Pastoriza-Gallego, M. et al. Evidence of unfolded protein translocation through a protein nanopore. ACS Nano8, 11350–11360 (2014).
Article
CAS
PubMed
Google Scholar
Oukhaled, G. et al. Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett. 98, 158101 (2007).
Pastoriza-Gallego, M. et al. Dynamics of unfolded protein transport through an aerolysin pore. J. Am. Chem. Soc.133, 2923–2931 (2011).
Article
CAS
PubMed
Google Scholar
Rodriguez-Larrea, D. & Bayley, H. Multistep protein unfolding during nanopore translocation. Nat. Nanotechnol.8, 288–295 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph.14, 33–38 (1996).
Article
CAS
PubMed
Google Scholar
Bitinaite, J. et al. USER friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res.35, 1992–2002 (2007).
Article
CAS
PubMed
PubMed Central
Google Scholar
Cavaleiro, A. M., Kim, S. H., Seppälä, S., Nielsen, M. T. & Nørholm, M. H. H. Accurate DNA assembly and genome engineering with optimized uracil excision cloning. ACS Synth. Biol.4, 1042–1046 (2015).
Article
CAS
PubMed
Google Scholar
Nørholm, M. H. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol.10, 21 (2010).
Article
PubMed
PubMed Central
Google Scholar
Zhang, S. et al. Bottom-up fabrication of a proteasome–nanopore that unravels and processes single proteins. Nat. Chem.13, 1192–1199 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Maglia, G., Heron, A. J. J. A. J., Stoddart, D., Japrung, D. & Bayley, H. Analysis of single nucleic acid molecules with protein nanopores. Methods Enzymol.475, 591–623 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res.46, W296–W303 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanaka, Y. et al. 2-Methyl-2,4-pentanediol induces spontaneous assembly of staphylococcal α-hemolysin into heptameric pore structure. Protein Sci.20, 448–456 (2011).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lambey, P. et al. Structural insights into recognition of chemokine receptors by Staphylococcus aureus leukotoxins. eLife11, e72555 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Nocadello, S. et al. Crystal structures of the components of the Staphylococcus aureus leukotoxin ED. Acta Crystallogr. Sect. D Struct. Biol.72, 113–120 (2016).
Article
CAS
Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature596, 583–589 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Pettersen, E. F. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–12 (2004).
Article
CAS
PubMed
Google Scholar
Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem.26, 1781–1802 (2005).
Article
CAS
PubMed
PubMed Central
Google Scholar
Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J. Chem. Theory Comput.8, 3257–3273 (2012).
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys.79, 926–935 (1983).
Article
CAS
Google Scholar
Yoo, J. & Aksimentiev, A. Improved parametrization of Li+, Na+, K+, and Mg2+ Ions for all-atom molecular dynamics simulations of nucleic acid systems. J. Phys. Chem. Lett.3, 45–50 (2012).
Article
CAS
Google Scholar
Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys.103, 8577–8593 (1995).
Article
CAS
Google Scholar
Miyamoto, S. & Kollman, P. A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem.13, 952–962 (1992).
Article
CAS
Google Scholar
Andersen, H. C. Rattle: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys.52, 24–34 (1983).
Article
CAS
Google Scholar
Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys.101, 4177–4189 (1994).
Article
CAS
Google Scholar
Gumbart, J., Khalili-Araghi, F., Sotomayor, M. & Roux, B. Constant electric field simulations of the membrane potential illustrated with simple systems. Biochim. Biophys. Acta1818, 294–302 (2012).
Article
CAS
PubMed
Google Scholar
Crozier, P. S., Henderson, D., Rowley, R. L. & Busath, D. D. Model channel ion currents in NaCl-extended simple point charge water solution with applied-field molecular dynamics. Biophys. J.81, 3077–3089 (2001).
Article
CAS
PubMed
PubMed Central
Google Scholar
>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Nature.com – https://www.nature.com/articles/s41587-023-01954-x