* . *
  • About
  • Advertise
  • Privacy & Policy
  • Contact
Saturday, August 23, 2025
Earth-News
  • Home
  • Business
  • Entertainment
    From polka to Poison, Corn Palace adjusts entertainment offerings with the times – Mitchell Republic

    From polka to Poison, Corn Palace adjusts entertainment offerings with the times – Mitchell Republic

    How to watch ‘F1: The Movie’ on Prime Video – About Amazon

    Experience the Thrill: How to Stream ‘F1: The Movie’ on Prime Video

    FOX One is now available on Prime Video: Here’s everything to know – About Amazon

    FOX One is now available on Prime Video: Here’s everything to know – About Amazon

    What Are Our Predictions for Taylor Swift’s ‘Life of a Showgirl’ Based on What She’s Told Us So Far? – yahoo.com

    Uncover the Hidden Surprises in Taylor Swift’s ‘Life of a Showgirl’ – Can You Decode Her Clues?

    Bama Dining Serving Up New Food, Entertainment – UA News Center

    Bama Dining Launches Thrilling New Food and Entertainment Experiences

    The latest on Williams-Brice Stadium renovations, entertainment district – On3

    Discover the Thrilling New Upgrades Coming to Williams-Brice Stadium and Its Vibrant Entertainment District!

  • General
  • Health
  • News

    Cracking the Code: Why China’s Economic Challenges Aren’t Shaking Markets, Unlike America’s” – Bloomberg

    Trump’s Narrow Window to Spread the Truth About Harris

    Trump’s Narrow Window to Spread the Truth About Harris

    Israel-Gaza war live updates: Hamas leader Ismail Haniyeh assassinated in Iran, group says

    Israel-Gaza war live updates: Hamas leader Ismail Haniyeh assassinated in Iran, group says

    PAP Boss to Niger Delta Youths, Stay Away from the Protest

    PAP Boss to Niger Delta Youths, Stay Away from the Protest

    Court Restricts Protests In Lagos To Freedom, Peace Park

    Court Restricts Protests In Lagos To Freedom, Peace Park

    Fans React to Jazz Jennings’ Inspiring Weight Loss Journey

    Fans React to Jazz Jennings’ Inspiring Weight Loss Journey

    Trending Tags

    • Trump Inauguration
    • United Stated
    • White House
    • Market Stories
    • Election Results
  • Science
  • Sports
  • Technology
    Alcorn State awarded grant to boost STEM with VR technology – WJTV

    Alcorn State Secures Grant to Transform STEM Education Through Cutting-Edge VR Technology

    Hyundai: The Only Way To Beat China Is To Embrace Technology – InsideEVs

    Hyundai’s Bold Strategy to Outpace China with Cutting-Edge Technology

    Teaching older adults how to use technology – WWNY

    Empowering Older Adults to Master Technology with Confidence

    Denver man receives pacemaker using new technology – CBS News

    Denver Man’s Life Transformed by Revolutionary Pacemaker Technology

    Morgan County Rescue Squad is using new technology to recover people missing in the water faster – WAFF

    Morgan County Rescue Squad is using new technology to recover people missing in the water faster – WAFF

    YSU to celebrate launch of new radiology technology program – WKBN.com

    YSU Launches Exciting New Radiology Technology Program Celebration

    Trending Tags

    • Nintendo Switch
    • CES 2017
    • Playstation 4 Pro
    • Mark Zuckerberg
No Result
View All Result
  • Home
  • Business
  • Entertainment
    From polka to Poison, Corn Palace adjusts entertainment offerings with the times – Mitchell Republic

    From polka to Poison, Corn Palace adjusts entertainment offerings with the times – Mitchell Republic

    How to watch ‘F1: The Movie’ on Prime Video – About Amazon

    Experience the Thrill: How to Stream ‘F1: The Movie’ on Prime Video

    FOX One is now available on Prime Video: Here’s everything to know – About Amazon

    FOX One is now available on Prime Video: Here’s everything to know – About Amazon

    What Are Our Predictions for Taylor Swift’s ‘Life of a Showgirl’ Based on What She’s Told Us So Far? – yahoo.com

    Uncover the Hidden Surprises in Taylor Swift’s ‘Life of a Showgirl’ – Can You Decode Her Clues?

    Bama Dining Serving Up New Food, Entertainment – UA News Center

    Bama Dining Launches Thrilling New Food and Entertainment Experiences

    The latest on Williams-Brice Stadium renovations, entertainment district – On3

    Discover the Thrilling New Upgrades Coming to Williams-Brice Stadium and Its Vibrant Entertainment District!

  • General
  • Health
  • News

    Cracking the Code: Why China’s Economic Challenges Aren’t Shaking Markets, Unlike America’s” – Bloomberg

    Trump’s Narrow Window to Spread the Truth About Harris

    Trump’s Narrow Window to Spread the Truth About Harris

    Israel-Gaza war live updates: Hamas leader Ismail Haniyeh assassinated in Iran, group says

    Israel-Gaza war live updates: Hamas leader Ismail Haniyeh assassinated in Iran, group says

    PAP Boss to Niger Delta Youths, Stay Away from the Protest

    PAP Boss to Niger Delta Youths, Stay Away from the Protest

    Court Restricts Protests In Lagos To Freedom, Peace Park

    Court Restricts Protests In Lagos To Freedom, Peace Park

    Fans React to Jazz Jennings’ Inspiring Weight Loss Journey

    Fans React to Jazz Jennings’ Inspiring Weight Loss Journey

    Trending Tags

    • Trump Inauguration
    • United Stated
    • White House
    • Market Stories
    • Election Results
  • Science
  • Sports
  • Technology
    Alcorn State awarded grant to boost STEM with VR technology – WJTV

    Alcorn State Secures Grant to Transform STEM Education Through Cutting-Edge VR Technology

    Hyundai: The Only Way To Beat China Is To Embrace Technology – InsideEVs

    Hyundai’s Bold Strategy to Outpace China with Cutting-Edge Technology

    Teaching older adults how to use technology – WWNY

    Empowering Older Adults to Master Technology with Confidence

    Denver man receives pacemaker using new technology – CBS News

    Denver Man’s Life Transformed by Revolutionary Pacemaker Technology

    Morgan County Rescue Squad is using new technology to recover people missing in the water faster – WAFF

    Morgan County Rescue Squad is using new technology to recover people missing in the water faster – WAFF

    YSU to celebrate launch of new radiology technology program – WKBN.com

    YSU Launches Exciting New Radiology Technology Program Celebration

    Trending Tags

    • Nintendo Switch
    • CES 2017
    • Playstation 4 Pro
    • Mark Zuckerberg
No Result
View All Result
Earth-News
No Result
View All Result
Home Science

Unlocking the Power of Quantum Materials With Breakthrough Technology

July 19, 2024
in Science
Unlocking the Power of Quantum Materials With Breakthrough Technology
Share on FacebookShare on Twitter

2D Quantum Material Defect Concept

Researchers have introduced a novel method that integrates computational analysis with precision fabrication to accelerate the identification of quantum defects, enhancing potential applications in computing and telecommunications. Their work has led to significant advancements and the establishment of a publicly accessible quantum defect database. Credit: SciTechDaily.com

A powerful combination of high-throughput computation and precise fabrication techniques has been developed to accelerate the discovery of quantum defects.

For the first time, researchers have demonstrated an approach that combines high-throughput computation and atomic-scale fabrication to engineer high-performance quantum defects.The methods provide a novel pathway to accelerate the discovery of quantum materials for game-changing applications in computing, telecommunications, and sensors.The study team identified and precisely fabricated a promising quantum defect that replaces a sulfur atom with cobalt in tungsten disulfide.

Scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and several collaborating institutions have successfully demonstrated an innovative approach to finding breakthrough materials for quantum applications. The approach uses rapid computing methods to predict the properties of hundreds of materials, identifying short lists of the most promising ones. Then, precise fabrication methods are used to make the short-list materials and further evaluate their properties.

The study team included researchers at Dartmouth College, Penn State, Université Catholique de Louvain (UCLouvain), and the University of California, Merced.

“Together, these methods open the door for researchers to accelerate the discovery of quantum materials with specific functionalities that can revolutionize computing, telecommunications, and sensors.”

– Alex Weber-Bargioni

“In our approach, theoretical screening guides the targeted use of atomic-scale fabrication,” said Alex Weber-Bargioni, one of the study’s principal investigators and a scientist at Berkeley Lab’s Molecular Foundry, where much of this research was conducted. “Together, these methods open the door for researchers to accelerate the discovery of quantum materials with specific functionalities that can revolutionize computing, telecommunications, and sensors.”

Cobalt Defect

This image shows the cobalt defect fabricated by the study team. The green and yellow circles are tungsten and sulfur atoms that make up a 2D tungsten disulfide sample. The dark blue circles on the surface are cobalt atoms. The lower-right area highlighted in blue-green is a hole previously occupied by a sulfur atom. The area highlighted in reddish-purple is a defect – a sulfur vacancy filled with a cobalt atom. The scanning tunneling microscope (gray) is using electric current (light blue) to measure the defect’s atomic-scale properties. Credit: John C. Thomas/Berkeley Lab

The Promise of Quantum Defects

Quantum information science involves the use of atomic-scale phenomena to encode, process, and transmit information. One way to achieve this control is to create defects in materials – such as replacing one type of atom with another. These defects can be incorporated into systems that enable quantum applications.

“For defects to work for quantum applications, they need to have very specific electronic properties and structures,” said Geoffroy Hautier, a Dartmouth materials scientist and the project’s lead investigator. “They should preferably be able to absorb and emit light with wavelengths in the visible or telecommunications range.”

Two-dimensional (2D) materials – which are just one atom or molecule thick – are prime candidates to host such high-performance quantum defects due to their unique electronic properties and tunability.

Challenges and Innovative Solutions

There’s a catch, however. Defects with good quantum properties are very difficult to find.

“Consider the material tungsten disulfide (WS2),” said Sinéad Griffin, a Berkeley Lab scientist and one of the study’s principal investigators. “If you account for the dozens of periodic table elements that could be inserted into this material and all the possible atomic locations for the insertion, there are hundreds of possible defects that could be made. Looking beyond WS2, if you consider thousands of possible materials for defects, there are literally infinite possibilities.”

Functional quantum defects are typically discovered by accident. The traditional approach is for experimentalists to fabricate and evaluate defects one at a time. If one defect doesn’t have good properties, they repeat the process for another one. When a good one is finally found, theorists investigate why its properties are good. Exploring the hundreds of possible defects for WS2 in this manner would take several decades.

“Consider the material tungsten disulfide. If you account for the dozens of periodic table elements that could be inserted into this material and all the possible atomic locations for the insertion, there are hundreds of possible defects that could be made. Looking beyond WS2, if you consider thousands of possible materials for defects, there are literally infinite possibilities.”

– Sinéad Griffin

Harnessing Computational Power

The study team flipped this traditional approach, starting with theory and finishing with experiments. The basic idea: use theoretical computation as a guide to identify a much smaller number of promising defects for experimentalists to fabricate.

Hautier, Griffin, and postdoctoral researchers Yihuang Xiong (Dartmouth) and Wei Chen (UCLouvain) developed state-of-the-art, high-throughput computational methods to screen and accurately predict the properties of more than 750 defects in 2D WS2. The defects involved substituting a tungsten or sulfur atom with one of 57 other elements. The calculations were designed to identify defects with an optimal set of properties related to stability, electronic structure, and light absorption and emission.

The massive number of calculations, based on quantum mechanics principles, took advantage of the high performance computing resources at the National Energy Research Scientific Computing Center (NERSC) at Berkeley Lab. The analysis identified one defect – made by substituting a sulfur atom with a cobalt atom – with particularly good quantum properties. Before the study, no defect in WS2 was known to have these properties.

In addition to the traditional publication format, the team is sharing the results of its search with the global research community in a publicly available database called the Quantum Defect Genome. The researchers started the database with WS2 and have extended it to other host materials such as silicon. The aim is to encourage other researchers to contribute their data and build a large database of defects and their properties for various host materials.

Playing With Atoms Like LEGO Bricks

The next step was for experimentalists to fabricate and examine this cobalt defect. Such a task has historically been challenged by a lack of control over where defects form in materials. But Berkeley Lab researchers found a solution. Working at the Molecular Foundry, the team developed and applied a technique that enables atomic-level precision in fabrication.

Here’s how it worked: A 2D WS2 sample in a super-low-temperature vacuum was heated, and its surface was blasted with argon ions at just the right angle and energy. This caused a small fraction of the sulfur atoms to pop out, leaving tiny holes in the material. A mist of cobalt atoms was applied on the surface. The sharp metal tip of a scanning tunneling microscope was used to find a hole and nudge a cobalt atom into it – similar to putting in golf. Finally, the researchers used the microscope’s tip to measure the electronic properties of the cobalt defect.

“The microscope’s tip can see individual atoms and push them around,” said John Thomas, a Berkeley Lab postdoctoral researcher who conducted the fabrication. “It allows us to select a specific location for the cobalt atom and match the structure of the defect identified in the computational analysis. We’re essentially playing with atoms like LEGO bricks.”

Importantly, this method enables fabrication of identical defects. This is necessary for defects to interact with each other in quantum applications – a phenomenon known as entanglement. In quantum communications, for instance, one possible application is for defects to transmit information across a long-distance fiber-optic cable through light emission and absorption.

Experimental Confirmation of Theoretical Predictions

The experimental measurements of the defect’s electronic structure agreed with the computational predictions, demonstrating the accuracy of the predictions.

“This critical result shows the effectiveness of combining our computation and fabrication approaches to identify defects with sought-after properties,” said Weber-Bargioni. “It points to the value of using these approaches in the future.”

“Many factors came together to make this study a success,” said Hautier. “In addition to the computation and fabrication methods, our secret sauce was how the theorists and experimentalists collaborated. We met regularly and gave each other constant feedback on our methods to optimize the overall study. This deep collaboration was enabled by having common funding for the entire team.”

The team’s next step is to make additional measurements on the cobalt defect’s properties and investigate how to improve them. The researchers also plan to use their computational and fabrication methods to identify other high-performance defects. For example, desirable quantum states are fragile and can be easily disturbed by tiny vibrations that occur naturally in materials. It may be possible to engineer defects that are shielded from these vibrations.

“The ability to build complex materials with atomic precision – driven by theory – allows us to highly optimize their properties and potentially discover material functionalities that we do not even have a name for today,” said Weber-Bargioni. “We have built ourselves a huge materials playground for us to play in.”

Reference: “A substitutional quantum defect in WS2 discovered by high-throughput computational screening and fabricated by site-selective STM manipulation” by John C. Thomas, Wei Chen, Yihuang Xiong, Bradford A. Barker, Junze Zhou, Weiru Chen, Antonio Rossi, Nolan Kelly, Zhuohang Yu, Da Zhou, Shalini Kumari, Edward S. Barnard, Joshua A. Robinson, Mauricio Terrones, Adam Schwartzberg, D. Frank Ogletree, Eli Rotenberg, Marcus M. Noack, Sinéad Griffin, Archana Raja, David A. Strubbe, Gian-Marco Rignanese, Alexander Weber-Bargioni and Geoffroy Hautier, 26 April 2024, Nature Communications.
DOI: 10.1038/s41467-024-47876-3

The Molecular Foundry and NERSC are DOE Office of Science user facilities at Berkeley Lab.

The research was supported in part by DOE’s Office of Science.

>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : SciTechDaily – https://scitechdaily.com/unlocking-the-power-of-quantum-materials-with-breakthrough-technology/

Tags: PowerscienceUnlocking
Previous Post

Scientists Transform Molecules Into Mondrian Masterpieces

Next Post

Pandemic and Prejudice: How COVID-19 Worsened India’s Existing Inequalities

Putin wants to attend 2026 FIFA World Cup in the U.S. “very badly,” Trump says – Axios

Putin Eager to Attend 2026 FIFA World Cup in the U.S., Says Trump

August 23, 2025
How the semiconductor boom and ASU are transforming Arizona’s economy – ASU News

How the semiconductor boom and ASU are transforming Arizona’s economy – ASU News

August 23, 2025
From polka to Poison, Corn Palace adjusts entertainment offerings with the times – Mitchell Republic

From polka to Poison, Corn Palace adjusts entertainment offerings with the times – Mitchell Republic

August 23, 2025
Luther College to host discussion exploring links between soil and food health – Luther College

Luther College to host discussion exploring links between soil and food health – Luther College

August 23, 2025
OPINION | WOODY BASSETT: Can the nation do better in its politics? Can the Democrats? – Northwest Arkansas Democrat-Gazette

OPINION | WOODY BASSETT: Can the nation do better in its politics? Can the Democrats? – Northwest Arkansas Democrat-Gazette

August 23, 2025
Crossings: How Road Ecology is Shaping the Future of Our Planet – Living on Earth

Crossings: How Road Ecology is Shaping the Future of Our Planet

August 23, 2025
Toyota Friday Night Rivals kicks off season with Elizabethton at Science Hill – WCYB

Toyota Friday Night Rivals Ignite the Season with Elizabethton vs. Science Hill Showdown

August 23, 2025
Star Trek as Refuge for the Science-Minded – The Provincetown Independent

How Star Trek Ignites Passion and Empowers the Science-Minded

August 23, 2025
Refresh your wardrobe at these 11 QTS award-winning fashion and lifestyle stores – Time Out Worldwide

Transform Your Look with These 11 Must-Visit Fashion and Lifestyle Stores

August 23, 2025
Alcorn State awarded grant to boost STEM with VR technology – WJTV

Alcorn State Secures Grant to Transform STEM Education Through Cutting-Edge VR Technology

August 23, 2025

Categories

Archives

August 2025
MTWTFSS
 123
45678910
11121314151617
18192021222324
25262728293031
« Jul    
Earth-News.info

The Earth News is an independent English-language daily published Website from all around the World News

Browse by Category

  • Business (20,132)
  • Ecology (785)
  • Economy (806)
  • Entertainment (21,685)
  • General (16,624)
  • Health (9,846)
  • Lifestyle (818)
  • News (22,149)
  • People (807)
  • Politics (815)
  • Science (16,018)
  • Sports (21,304)
  • Technology (15,786)
  • World (787)

Recent News

Putin wants to attend 2026 FIFA World Cup in the U.S. “very badly,” Trump says – Axios

Putin Eager to Attend 2026 FIFA World Cup in the U.S., Says Trump

August 23, 2025
How the semiconductor boom and ASU are transforming Arizona’s economy – ASU News

How the semiconductor boom and ASU are transforming Arizona’s economy – ASU News

August 23, 2025
  • About
  • Advertise
  • Privacy & Policy
  • Contact

© 2023 earth-news.info

No Result
View All Result

© 2023 earth-news.info

No Result
View All Result

© 2023 earth-news.info

Go to mobile version