New South Wales, Australia, reached a record high and more efficient critical milestone temperature of 803 °C for concentrated solar thermal energy storage.
Concentrated Solar Thermal (CST) uses mirrors to concentrate sunlight, converting it to heat, which can then be stored or used to generate electricity.
Heated ceramic particles act like a battery, storing energy as heat, for up to 15 hours. As the particles cool, they release this energy. They could provide power whenever it’s needed, even at night and during periods of low solar and wind output.
Traditional CSTs are limited by the heat transfer fluids they use. Common fluids, like molten salt or high-temperature oil, can only handle up to 600°C and 400°C, respectively.
However, the ceramic particles the team is working with can endure temperatures over 1000°C. These particles not only absorb the sun’s heat but also store it, simplifying the system and reducing costs.
The ‘falling’ part of this method uses gravity to heat these tiny, dark-hued ceramic particles. Each particle is less than half a millimetre in size. The particles are dropped from a hopper at the top of the tower, and heated as they pass through focused solar energy. In a shortfall, their temperature can shoot from 500°C to 800°C, and with more advanced setups, possibly over 1000°C.
Unlike traditional methods that rely on steel tubes, the particles fall freely. This approach avoids the heat limitations of steel. Once heated, they’re stored in a silo. When needed, they’re used to produce steam for power generation or other industrial tasks.
CST takes energy from the sun, stores it and then allows the user to use that energy when the sun isn’t shining, such as overnight or on cloudy days.
CSIRO’s pilot system in Newcastle has 400 mirrors. However, a full-scale one might use over 10,000 larger mirrors. These can generate power similar to a 100 MW coal plant.
“The challenge isn’t so much collecting energy from the sun; it’s how to safely and efficiently convert that energy into heat and store it for later use,” researcher Wes Stein said. “The power generation from CST technology resembles a coal-fired power plant without the coal. It uses the same turbine. Typical coal-fired power plants use a steam turbine that operates at 540 degrees. Instead of using coal to create the heat to superheat the steam, we capture energy from the sun and store it for 10 to 15 hours.”
A global roundup reports 6460 megawatts of CST projects currently operational in 18 different countries, with another 3859 MW of projects under construction.
Brian Wang is a Futurist Thought Leader and a popular Science blogger with 1 million readers per month. His blog Nextbigfuture.com is ranked #1 Science News Blog. It covers many disruptive technology and trends including Space, Robotics, Artificial Intelligence, Medicine, Anti-aging Biotechnology, and Nanotechnology.
Known for identifying cutting edge technologies, he is currently a Co-Founder of a startup and fundraiser for high potential early-stage companies. He is the Head of Research for Allocations for deep technology investments and an Angel Investor at Space Angels.
A frequent speaker at corporations, he has been a TEDx speaker, a Singularity University speaker and guest at numerous interviews for radio and podcasts. He is open to public speaking and advising engagements.
>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Next Big Future – https://www.nextbigfuture.com/2024/01/improved-solar-thermal-energy-storage-could-replace-coal-plants.html
Unveiling 2024 Community Health Assessment: Join the Conversation and Collaborate for a Healthier Future!