Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391, 806–811 (1998).
Article
ADS
CAS
PubMed
Google Scholar
Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001).
Article
ADS
CAS
PubMed
Google Scholar
Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol.22, 96–118 (2021).
Article
CAS
PubMed
Google Scholar
Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet.20, 89–108 (2019).
Article
CAS
PubMed
Google Scholar
Baek, D. et al. The impact of microRNAs on protein output. Nature455, 64–71 (2008).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Obbard, D. J., Gordon, K. H., Buck, A. H. & Jiggins, F. M. The evolution of RNAi as a defence against viruses and transposable elements. Philos. Trans. R. Soc. Lond. B Biol. Sci.364, 99–115 (2009).
Article
CAS
PubMed
Google Scholar
Crooke, S. T., Witztum, J. L., Bennett, C. F. & Baker, B. F. RNA-targeted therapeutics. Cell Metab.27, 714–739 (2018).
Article
CAS
PubMed
Google Scholar
Dominski, Z. & Kole, R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl Acad. Sci. USA90, 8673–8677 (1993).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Gregory, R. I. et al. Human RISC couples MicroRNA biogenesis and posttranscriptional gene silencing. Cell123, 631–640 (2005).
Article
CAS
PubMed
Google Scholar
Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell101, 25–33 (2000).
Article
CAS
PubMed
Google Scholar
Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature404, 293–296 (2000).
Article
ADS
CAS
PubMed
Google Scholar
Roberts, T. C. The microRNA machinery. Adv. Exp. Med. Biol.887, 15–30 (2015).
Article
CAS
PubMed
Google Scholar
Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature466, 835–840 (2010).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Eichhorn, S. W. et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell56, 104–115 (2014).
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science305, 1437–1441 (2004).
Article
ADS
CAS
PubMed
Google Scholar
Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol.11, 599–606 (2004).
Article
CAS
PubMed
Google Scholar
Brown, C. R. et al. Investigating the pharmacodynamic durability of GalNAc–siRNA conjugates. Nucleic Acids Res.48, 11827–11844 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet.23, 265–280 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov.8, 129–138 (2009).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowie, A. G. & Unterholzner, L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat. Rev. Immunol.8, 911–922 (2008).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bumcrot, D., Manoharan, M., Koteliansky, V. & Sah, D. W. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat. Chem. Biol.2, 711–719 (2006).
Article
CAS
PubMed
PubMed Central
Google Scholar
Titze-de-Almeida, R., David, C. & Titze-de-Almeida, S. S. The race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm. Res.34, 1339–1363 (2017).
Article
CAS
PubMed
Google Scholar
Garba, A. O. & Mousa, S. A. Bevasiranib for the treatment of wet, age-related macular degeneration. Ophthalmol. Eye Dis.2, 75–83 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Eisenstein, M. Pharma’s roller-coaster relationship with RNA therapies. Nature574, S4–S6 (2019).
Article
ADS
CAS
Google Scholar
Bailey, A. L. & Cullis, P. R. Modulation of membrane fusion by asymmetric transbilayer distributions of amino lipids. Biochemistry33, 12573–12580 (1994).
Article
CAS
PubMed
Google Scholar
Semple, S. C. et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta1510, 152–166 (2001).
Article
CAS
PubMed
Google Scholar
Hafez, I. M., Maurer, N. & Cullis, P. R. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther.8, 1188–1196 (2001).
Article
CAS
PubMed
Google Scholar
Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature441, 111–114 (2006).
Article
ADS
CAS
PubMed
Google Scholar
Judge, A. D., Bola, G., Lee, A. C. & MacLachlan, I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther.13, 494–505 (2006).
Article
CAS
PubMed
Google Scholar
Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol.28, 172–176 (2010).
Article
CAS
PubMed
Google Scholar
Akinc, A. et al. Development of lipidoid–siRNA formulations for systemic delivery to the liver. Mol. Ther.17, 872–879 (2009).
Article
CAS
PubMed
PubMed Central
Google Scholar
Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA107, 1864–1869 (2010).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther.18, 1357–1364 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. Engl.51, 8529–8533 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther.25, 1467–1475 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Fitzgerald, K. et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet383, 60–68 (2014).
Article
CAS
PubMed
Google Scholar
Coelho, T. et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med.369, 819–829 (2013).
Article
CAS
PubMed
Google Scholar
Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med.379, 11–21 (2018).
Article
CAS
PubMed
Google Scholar
Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater.6, 1074–1094 (2021).
Article
ADS
Google Scholar
Szabó, G. T., Mahiny, A. J. & Vlatkovic, I. COVID-19 mRNA vaccines: platforms and current developments. Mol. Ther.30, 1850–1868 (2022).
Article
PubMed
PubMed Central
Google Scholar
Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther.21, 1570–1578 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther.26, 1509–1519 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang, X. et al. Biodegradable amino-ester nanomaterials for Cas9 mRNA delivery in vitro and in vivo. ACS Appl. Mater. Interfaces9, 25481–25487 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Allerson, C. R. et al. Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem.48, 901–904 (2005).
Article
CAS
PubMed
Google Scholar
Morrissey, D. V. et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology41, 1349–1356 (2005).
Article
CAS
PubMed
Google Scholar
Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc.136, 16958–16961 (2014).
Article
CAS
PubMed
Google Scholar
Butler, J. S. et al. Preclinical evaluation of RNAi as a treatment for transthyretin-mediated amyloidosis. Amyloid23, 109–118 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Stockert, R. J., Morell, A. G. & Scheinberg, I. H. Mammalian hepatic lectin. Science186, 365–366 (1974).
Article
ADS
CAS
PubMed
Google Scholar
Steer, C. J. & Ashwell, G. Studies on a mammalian hepatic binding protein specific for asialoglycoproteins. Evidence for receptor recycling in isolated rat hepatocytes. J. Biol. Chem.255, 3008–3013 (1980).
Article
CAS
PubMed
Google Scholar
Stockert, R. J. et al. Endocytosis of asialoglycoprotein-enzyme conjugates by hepatocytes. Lab Invest.43, 556–563 (1980).
CAS
PubMed
Google Scholar
Schwartz, A. L., Fridovich, S. E. & Lodish, H. F. Kinetics of internalization and recycling of the asialoglycoprotein receptor in a hepatoma cell line. J. Biol. Chem.257, 4230–4237 (1982).
Article
CAS
PubMed
Google Scholar
Rensen, P. C., van Leeuwen, S. H., Sliedregt, L. A., van Berkel, T. J. & Biessen, E. A. Design and synthesis of novel N-acetylgalactosamine-terminated glycolipids for targeting of lipoproteins to the hepatic asialoglycoprotein receptor. J. Med. Chem.47, 5798–5808 (2004).
Article
CAS
PubMed
Google Scholar
Huang, X., Leroux, J. C. & Castagner, B. Well-defined multivalent ligands for hepatocytes targeting via asialoglycoprotein receptor. Bioconjug. Chem.28, 283–295 (2017).
Article
CAS
PubMed
Google Scholar
Rajeev, K. G. et al. Hepatocyte-specific delivery of siRNAs conjugated to novel non-nucleosidic trivalent N-acetylgalactosamine elicits robust gene silencing in vivo. ChemBioChem16, 903–908 (2015).
Article
CAS
PubMed
Google Scholar
Matsuda, S. et al. siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes. ACS Chem. Biol.10, 1181–1187 (2015).
Article
CAS
PubMed
Google Scholar
Zimmermann, T. S. et al. Clinical proof of concept for a novel hepatocyte-targeting GalNAc–siRNA conjugate. Mol. Ther.25, 71–78 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Judge, D. P. et al. Phase 3 multicenter study of revusiran in patients with hereditary transthyretin-mediated (hATTR) amyloidosis with cardiomyopathy (ENDEAVOUR). Cardiovasc. Drugs Ther.34, 357–370 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Nair, J. K. et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc–siRNA conjugates. Nucleic Acids Res.45, 10969–10977 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Foster, D. J. et al. Advanced siRNA designs further improve in vivo performance of GalNAc–siRNA conjugates. Mol. Ther.26, 708–717 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Habtemariam, B. A. et al. Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-acetylgalactosamine-small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin. Pharmacol. Ther.109, 372–382 (2021).
Article
CAS
PubMed
Google Scholar
Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med.376, 1430–1440 (2017).
Article
CAS
PubMed
Google Scholar
Janas, M. M. et al. Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat. Commun.9, 723 (2018).
Article
ADS
PubMed
PubMed Central
Google Scholar
Prakash, T. P. et al. Identification of metabolically stable 5′-phosphate analogs that support single-stranded siRNA activity. Nucleic Acids Res.43, 2993–3011 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Parmar, R. et al. 5′-(E)-Vinylphosphonate: a stable phosphate mimic can improve the RNAi activity of siRNA-GalNAc conjugates. ChemBioChem17, 985–989 (2016).
Article
CAS
PubMed
Google Scholar
Brown, K. M. et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat. Biotechnol.40, 1500–1508 (2022).
Article
CAS
PubMed
Google Scholar
Janas, M. M. et al. The nonclinical safety profile of GalNAc-conjugated RNAi therapeutics in subacute studies. Toxicol. Pathol.46, 735–745 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
McDougall, R. et al. The nonclinical disposition and pharmacokinetic/pharmacodynamic properties of N-acetylgalactosamine-conjugated small interfering RNA are highly predictable and build confidence in translation to human. Drug Metab. Dispos.50, 781–797 (2022).
Article
CAS
PubMed
Google Scholar
Larsson, E., Sander, C. & Marks, D. mRNA turnover rate limits siRNA and microRNA efficacy. Mol. Syst. Biol.6, 433 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Agarwal, S. et al. Pharmacokinetics and pharmacodynamics of the small interfering ribonucleic acid, givosiran, in patients with acute hepatic porphyria. Clin. Pharmacol. Ther.108, 63–72 (2020).
Article
CAS
PubMed
Google Scholar
Hu, B. et al. Therapeutic siRNA: state of the art. Signal Transduct. Target. Ther.5, 101 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Springer, A. D. & Dowdy, S. F. GalNAc–siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther.28, 109–118 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawasaki, A. M. et al. Uniformly modified 2′-deoxy-2′-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J. Med. Chem.36, 831–841 (1993).
Article
CAS
PubMed
Google Scholar
Tobin, K. A. Macugen treatment for wet age-related macular degeneration. Insight31, 11–14 (2006).
PubMed
Google Scholar
McKenzie, R. et al. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N. Engl. J. Med.333, 1099–1105 (1995).
Article
CAS
PubMed
Google Scholar
Richardson, F. C. et al. An evaluation of the toxicities of 2′-fluorouridine and 2′-fluorocytidine-HCl in F344 rats and woodchucks (Marmota monax). Toxicol. Pathol.27, 607–617 (1999).
Article
CAS
PubMed
Google Scholar
Saleh, A. F. et al. 2′-O-(2-methoxyethyl) nucleosides are not phosphorylated or incorporated into the genome of human lymphoblastoid TK6 cells. Toxicol. Sci.163, 70–78 (2018).
Article
CAS
PubMed
Google Scholar
Shen, W., Liang, X. H., Sun, H. & Crooke, S. T. 2′-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF. Nucleic Acids Res.43, 4569–4578 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Janas, M. M. et al. Safety evaluation of 2′-deoxy-2′-fluoro nucleotides in GalNAc–siRNA conjugates. Nucleic Acids Res.47, 3306–3320 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ray, K. K. et al. Long-term efficacy and safety of inclisiran in patients with high cardiovascular risk and elevated LDL cholesterol (ORION-3): results from the 4-year open-label extension of the ORION-1 trial. Lancet Diabetes Endocrinol.11, 109–119 (2023).
Article
CAS
PubMed
Google Scholar
Vosberg, H. P. & Eckstein, F. Effect of deoxynucleoside phosphorothioates incorporated in DNA on cleavage by restriction enzymes. J. Biol. Chem.257, 6595–6599 (1982).
Article
CAS
PubMed
Google Scholar
Geary, R. S., Yu, R. Z. & Levin, A. A. Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr. Opin. Investig. Drugs2, 562–573 (2001).
CAS
PubMed
Google Scholar
Burgers, P. M. J. & Eckstein, F. Synthesis of dinucleoside monophosphorothioates via addition of sulphur to phosphite triesters. Tetrahedron Lett.19, 3835–3838 (1978).
Article
Google Scholar
Crooke, S. T., Seth, P. P., Vickers, T. A. & Liang, X. H. The interaction of phosphorothioate-containing RNA targeted drugs with proteins is a critical determinant of the therapeutic effects of these Agents. J. Am. Chem. Soc.142, 14754–14771 (2020).
Article
CAS
PubMed
Google Scholar
Frazier, K. S. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist’s perspective. Toxicol. Pathol.43, 78–89 (2015).
Article
PubMed
Google Scholar
Janas, M. M. et al. Exposure to siRNA–GalNAc conjugates in systems of the standard test battery for genotoxicity. Nucleic Acid Ther.26, 363–371 (2016).
Article
CAS
PubMed
Google Scholar
Ray, K. K. et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med.382, 1507–1519 (2020).
Article
CAS
PubMed
Google Scholar
Valdmanis, P. N. et al. RNA interference-induced hepatotoxicity results from loss of the first synthesized isoform of microRNA-122 in mice. Nat. Med.22, 557–562 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature441, 537–541 (2006).
Article
ADS
CAS
PubMed
Google Scholar
Zlatev, I. et al. Reversal of siRNA-mediated gene silencing in vivo. Nat. Biotechnol.36, 509–511 (2018).
Article
CAS
PubMed
Google Scholar
Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol.21, 635–637 (2003).
Article
CAS
PubMed
Google Scholar
Jackson, A. L. et al. Widespread siRNA ‘off-target’ transcript silencing mediated by seed region sequence complementarity. RNA12, 1179–1187 (2006).
Article
CAS
PubMed
PubMed Central
Google Scholar
Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods3, 199–204 (2006).
Article
CAS
PubMed
Google Scholar
Bramsen, J. B. et al. A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects. Nucleic Acids Res.38, 5761–5773 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaish, N. et al. Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs. Nucleic Acids Res.39, 1823–1832 (2011).
Article
CAS
PubMed
Google Scholar
Schlegel, M. K. et al. From bench to bedside: improving the clinical safety of GalNAc–siRNA conjugates using seed-pairing destabilization. Nucleic Acids Res.50, 6656–6670 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Gane, E. et al. Evaluation of RNAi therapeutics VIR-2218 and ALN-HBV for chronic hepatitis B: results from randomized clinical trials. J. Hepatol.79, 924–932 (2023).
Article
CAS
PubMed
Google Scholar
Zhang, M. M., Bahal, R., Rasmussen, T. P., Manautou, J. E. & Zhong, X. B. The growth of siRNA-based therapeutics: updated clinical studies. Biochem. Pharmacol.189, 114432 (2021).
Article
CAS
PubMed
Google Scholar
Grimm, D. Asymmetry in siRNA design. Gene Ther.16, 827–829 (2009).
Article
CAS
PubMed
Google Scholar
Biscans, A. et al. The chemical structure and phosphorothioate content of hydrophobically modified siRNAs impact extrahepatic distribution and efficacy. Nucleic Acids Res.48, 7665–7680 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim, D. H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol.23, 222–226 (2005).
Article
CAS
PubMed
Google Scholar
Zhang, X., Goel, V. & Robbie, G. J. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis. J. Clin. Pharmacol.60, 573–585 (2019).
Article
PubMed
PubMed Central
Google Scholar
Setten, R. L., Rossi, J. J. & Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov.18, 421–446 (2019).
Article
CAS
PubMed
Google Scholar
Bangalore, S., Breazna, A., DeMicco, D. A., Wun, C.-C. & Messerli, F. H. Visit-to-visit low-density lipoprotein cholesterol variability and risk of cardiovascular outcomes. J. Am. Coll. Cardiol.65, 1539–1548 (2015).
Article
CAS
PubMed
Google Scholar
Fields, T. R. The challenges of approaching and managing gout. Rheum. Dis. Clin. North Am.45, 145–157 (2019).
Article
PubMed
Google Scholar
Flack, J. M. Epidemiology and unmet needs in hypertension. J. Manag. Care Pharm.13, 2–8 (2007).
PubMed
Google Scholar
Ceral, J. et al. Difficult-to-control arterial hypertension or uncooperative patients? The assessment of serum antihypertensive drug levels to differentiate non-responsiveness from non-adherence to recommended therapy. Hypertens. Res.34, 87–90 (2011).
Article
CAS
PubMed
Google Scholar
Tomaszewski, M. et al. High rates of non-adherence to antihypertensive treatment revealed by high-performance liquid chromatography-tandem mass spectrometry (HP LC–MS/MS) urine analysis. Heart100, 855–861 (2014).
Article
CAS
PubMed
Google Scholar
Nelson, M. R. Moving the goalposts for blood pressure—time to act. N. Engl. J. Med.385, 1328–1329 (2021).
Article
PubMed
Google Scholar
Balakrishnan, K. N. et al. Multiple gene targeting siRNAs for down regulation of Immediate Early-2 (Ie2) and DNA polymerase genes mediated inhibition of novel rat cytomegalovirus (strain All-03). Virol. J.17, 164 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Alterman, J. F. et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat. Biotechnol.37, 884–894 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chernikov, I. V., Vlassov, V. V. & Chernolovskaya, E. L. Current development of siRNA bioconjugates: from research to the clinic. Front. Pharmacol.10, 444 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet.101, 5–22 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellenguez, C. et al. A robust clustering algorithm for identifying problematic samples in genome-wide association studies. Bioinformatics28, 134–135 (2012).
Article
CAS
PubMed
Google Scholar
Jonsson, T. et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature488, 96–99 (2012).
Article
ADS
CAS
PubMed
Google Scholar
Helgadottir, A. et al. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nat. Genet.48, 634–639 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov.12, 581–594 (2013).
Article
CAS
PubMed
Google Scholar
King, E. A., Davis, J. W. & Degner, J. F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet.15, e1008489 (2019).
Article
PubMed
PubMed Central
Google Scholar
Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med.12, e1001779 (2015).
Article
PubMed
PubMed Central
Google Scholar
Szustakowski, J. D. et al. Advancing human genetics research and drug discovery through exome sequencing of the UK Biobank. Nat. Genet.53, 942–948 (2021).
Article
CAS
PubMed
Google Scholar
Nguyen, P. A., Born, D. A., Deaton, A. M., Nioi, P. & Ward, L. D. Phenotypes associated with genes encoding drug targets are predictive of clinical trial side effects. Nat. Commun.10, 1579 (2019).
Article
ADS
PubMed
PubMed Central
Google Scholar
Diogo, D. et al. Phenome-wide association studies across large population cohorts support drug target validation. Nat. Commun.9, 4285 (2018).
Article
ADS
PubMed
PubMed Central
Google Scholar
Minikel, E. V. et al. Evaluating drug targets through human loss-of-function genetic variation. Nature581, 459–464 (2020).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Khan, F. A. et al. CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases. Oncotarget7, 52541–52552 (2016).
Article
PubMed
PubMed Central
Google Scholar
Herrera-Carrillo, E., Gao, Z. & Berkhout, B. CRISPR therapy towards an HIV cure. Brief. Funct. Genomics19, 201–208 (2020).
Article
CAS
PubMed
Google Scholar
Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med.385, 493–502 (2021).
Article
CAS
PubMed
Google Scholar
Wittrup, A. & Lieberman, J. Knocking down disease: a progress report on siRNA therapeutics. Nat. Rev. Genet.16, 543–552 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Egeberg, O. Thrombophilia caused by inheritable deficiency of blood antithrombin. Scand. J. Clin. Lab. Invest.17, 92 (1965).
Article
CAS
PubMed
Google Scholar
Pasi, K. J. et al. Targeting of antithrombin in hemophilia A or B with RNAi therapy. N. Engl. J. Med.377, 819–828 (2017).
Article
CAS
PubMed
Google Scholar
Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med.376, 41–51 (2017).
Article
CAS
PubMed
Google Scholar
Wong, C. H., Siah, K. W. & Lo, A. W. Estimation of clinical trial success rates and related parameters. Biostatistics20, 273–286 (2019).
Article
MathSciNet
PubMed
Google Scholar
Chan, A. et al. Preclinical development of a subcutaneous ALAS1 RNAi therapeutic for treatment of hepatic porphyrias using circulating RNA quantification. Mol. Ther. Nucleic Acids4, e263 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Balwani, M. et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med.382, 2289–2301 (2020).
Article
CAS
PubMed
Google Scholar
Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med.384, 1216–1226 (2021).
Article
CAS
PubMed
Google Scholar
Wright, R. S. et al. Pooled patient-level analysis of inclisiran trials in patients with familial hypercholesterolemia or atherosclerosis. J. Am. Coll. Cardiol.77, 1182–1193 (2021).
Article
CAS
PubMed
Google Scholar
Adams, D. et al. Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: a randomized clinical trial. Amyloid30, 1–9 (2023).
Article
PubMed
Google Scholar
Zhu, Y. et al. RNA-based therapeutics: an overview and prospectus. Cell Death Dis.13, 644 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh, R. N. & Singh, N. N. Mechanism of splicing regulation of spinal muscular atrophy genes. Adv. Neurobiol.20, 31–61 (2018).
Article
PubMed
PubMed Central
Google Scholar
Ackermann, E. J. et al. Suppressing transthyretin production in mice, monkeys and humans using 2nd-generation antisense oligonucleotides. Amyloid23, 148–157 (2016).
Article
CAS
PubMed
Google Scholar
Bartel, D. P. Metazoan microRNAs. Cell173, 20–51 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Napoli, C., Lemieux, C. & Jorgensen, R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell.2, 279–289 (1990).
Article
CAS
PubMed
PubMed Central
Google Scholar
Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature432, 173–178 (2004).
Article
ADS
CAS
PubMed
Google Scholar
>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Nature.com – https://www.nature.com/articles/s41587-023-02105-y