References
Vinik, A. I., Nevoret, M., Casellini, C. & Parson, H. Neurovascular function and sudorimetry in health and disease. Curr.Diab.Rep.13, 517–532 (2013).
Google Scholar
Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol.37, 407–419 (2019).
Article
PubMed
CAS
Google Scholar
Baker, L. B. & Wolfe, A. S. Physiological mechanisms determining eccrine sweat composition. Eur. J. Appl. Physiol.120, 719–752 (2020).
Article
PubMed
PubMed Central
CAS
Google Scholar
LeGrys, V., Briscoe, D. & McColley, S. Sweat Testing: Specimen Collection and Quantitative Chloride Analysis; Approved Guideline 4th edn (Clinical and Laboratory Standards Institute, 2019).
Hussain, J. N., Mantri, N. & Cohen, M. M. Working up a good sweat — the challenges of standardising sweat collection for metabolomics analysis. Clin. Biochem. Rev.38, 13–34 (2017).
PubMed
PubMed Central
Google Scholar
Cizza, G. et al. Elevated neuroimmune biomarkers in sweat patches and plasma of premenopausal women with major depressive disorder in remission: the POWER Study. Biol. Psychiatry64, 907–911 (2008).
Article
PubMed
PubMed Central
CAS
Google Scholar
Sempionatto, J. R., Moon, J.-M. & Wang, J. Touch-based fingertip blood-free reliable glucose monitoring: personalized data processing for predicting blood glucose concentrations. ACS Sens.6, 1875–1883 (2021).
Article
PubMed
CAS
Google Scholar
Torrente-Rodríguez, R. M. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter2, 921–937 (2020).
Article
PubMed
PubMed Central
Google Scholar
Busch, R. On the history of cystic fibrosis. Acta Univ. Carol. Med.36, 13–15 (1990).
CAS
Google Scholar
Pérez-Frías, J. et al. The history of cystic fibrosis. Open J.Pediatr.Child Health4, 001–006 (2019).
Google Scholar
Quinton, P. M. Physiological basis of cystic fibrosis: a historical perspective. Physiol. Rev.79, S3–S22 (1999).
Article
PubMed
CAS
Google Scholar
Darling, R. C., Disant’agnese, P. A., Perera, G. A. & Andersen, D. H. Electrolyte abnormalities of the sweat in fibrocystic disease of the pancreas. Am. J. Med. Sci.225, 67–70 (1953).
Article
PubMed
CAS
Google Scholar
Barbero, G. J., Kim, I. C. & Mcgavran, J. A simplified technique for the sweat test in the diagnosis of fibrocystic disease of the pancreas. Pediatrics18, 189–192 (1956).
Article
PubMed
CAS
Google Scholar
Gibson, E. & Cooke, E. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics23, 545–549 (1959).
Webster, H. L. & Rundell, C. A. Laboratory diagnosis of cystic fibrosis. Crit. Rev. Clin. Lab. Sci.18, 313–338 (1982).
Article
Google Scholar
Sato, K. in Reviews of Physiology, Biochemistry and Pharmacology Vol. 79 (eds Adrian, R. H. et al.) 51–131 (Springer, 1977).
Sato, K., Feibleman, C. & Dobson, R. L. The electrolyte composition of pharmacologically and thermally stimulated sweat: a comparative study. J.Invest.Dermatol.55, 433–438 (1970).
CAS
Google Scholar
Sato, K. & Dobson, R. L. Regional and individual variations in the function of the human eccrine sweat gland. J.Invest.Dermatol.54, 443–449 (1970).
CAS
Google Scholar
Sato, K. Sweat induction from an isolated eccrine sweat gland. Am. J. Physiol.225, 1147–1152 (1973).
Article
PubMed
CAS
Google Scholar
Drexelius, A., Fehr, D., Vescoli, V., Heikenfeld, J. & Bonmarin, M. A simple non-contact optical method to quantify in-vivo sweat gland activity and pulsation. In IEEE Transactions on Biomedical Engineering 2638–2645 (IEEE, 2022).
Yanagawa, S., Yokozeki, H. & Sato, K. Origin of periodic acid–Schiff-reactive glycoprotein in human eccrine sweat. J. Appl. Physiol.60, 1615–1622 (1986).
Article
PubMed
CAS
Google Scholar
Nicolaidis, S. & Sivadjian, J. High-frequency pulsatile discharge of human sweat glands: myoepithelial mechanism. J. Appl. Physiol.32, 86–90 (1972).
Article
PubMed
CAS
Google Scholar
Ogawa, T. & Sugenoya, J. Pulsatile sweating and sympathetic sudomotor activity. Jpn. J. Physiol.43, 275–289 (1993).
Article
PubMed
CAS
Google Scholar
Schwartz, I. L. & Thaysen, J. H. Excretion of sodium and potassium in human sweat. J. Clin. Invest.35, 114–120 (1956).
Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature6, 211–259 (2019).
Article
Google Scholar
Quinton, P. M. Cystic fibrosis: lessons from the sweat gland. Physiology22, 212–225 (2007).
Article
PubMed
CAS
Google Scholar
Nadel, E. R. Control of sweating rate while exercising in the heat. Med. Sci. Sports11, 31–35 (1979).
PubMed
CAS
Google Scholar
Nadel, E. R., Bullard, R. W. & Stolwijk, J. A. Importance of skin temperature in the regulation of sweating. J. Appl. Physiol.31, 80–87 (1971).
Article
PubMed
CAS
Google Scholar
Shibasaki, M. & Crandall, C. G. Mechanisms and controllers of eccrine sweating in humans. Front. Biosci. (Schol. Ed.)2, 685–696 (2010).
PubMed
Google Scholar
Shibasaki, M., Secher, N. H., Selmer, C., Kondo, N. & Crandall, C. G. Central command is capable of modulating sweating from non-glabrous human skin. J. Physiol.553, 999–1004 (2003).
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu, Y., Converse, C., Lyons, M. C. & Hsu, W. H. Neural control of sweat secretion: a review. Br. J. Dermatol.178, 1246–1256 (2018).
Article
PubMed
CAS
Google Scholar
Simmers, P., Li, S. K., Kasting, G. & Heikenfeld, J. Prolonged and localized sweat stimulation by iontophoretic delivery of the slowly-metabolized cholinergic agent carbachol. J. Dermatol. Sci.89, 40–51 (2018).
Article
PubMed
CAS
Google Scholar
Souza, S. L., Graça, G. & Oliva, A. Characterization of sweat induced with pilocarpine, physical exercise, and collected passively by metabolomic analysis. Skin Res. Technol.24, 187–195 (2018).
Article
PubMed
CAS
Google Scholar
Sato, K., Kang, W. H., Saga, K. & Sato, K. T. Biology of sweat glands and their disorders. I. Normal sweat gland function. J. Am. Acad. Dermatol.20, 537–563 (1989).
Article
PubMed
CAS
Google Scholar
Sonner, Z. et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics9, 031301 (2015).
Article
PubMed
PubMed Central
CAS
Google Scholar
Sato, F., Takemura, T., Hibino, T. & Sato, K. Lectin binding glycoproteins in human eccrine sweat. J. Invest. Dermatol.88, 515–515 (1987).
Macroduct Sweat Collection System (Model 3700) Instruction/Service Manual (Wescor, 2004).
Huestis, M. A. et al. Sweat testing for cocaine, codeine and metabolites by gas chromatography–mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl.733, 247–264 (1999).
Article
PubMed
CAS
Google Scholar
Brueck, A., Iftekhar, T., Stannard, A. B., Yelamarthi, K. & Kaya, T. A real-time wireless sweat rate measurement system for physical activity monitoring. Sensors18, 533 (2018).
Article
PubMed
PubMed Central
Google Scholar
Katchman, B. A., Zhu, M., Blain Christen, J. & Anderson, K. S. Eccrine sweat as a biofluid for profiling immune biomarkers. Proteomics Clin. Appl.12, 1800010 (2018).
Article
PubMed
PubMed Central
Google Scholar
Matzeu, G., Fay, C., Vaillant, A., Coyle, S. & Diamond, D. A wearable device for monitoring sweat rates via image analysis. IEEE Trans. Biomed. Eng.63, 1672–1680 (2016).
Article
PubMed
Google Scholar
Mayaudon, H., Miloche, P.-O. & Bauduceau, B. A new simple method for assessing sudomotor function: relevance in type 2 diabetes. Diabetes Metab.36, 450–454 (2010).
Article
PubMed
CAS
Google Scholar
Baker, L. B. et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci. Adv.6, eabe3929 (2020).
Article
PubMed
PubMed Central
CAS
Google Scholar
Baker, L. B. et al. Sweating rate and sweat chloride concentration of elite male basketball players measured with a wearable microfluidic device versus the standard absorbent patch method. Int. J. Sport Nutr. Exerc. Metab.1, 342–349 (2022).
Article
Google Scholar
Jia, W. et al. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem.85, 6553–6560 (2013).
Article
PubMed
CAS
Google Scholar
Guinovart, T. J., Bandodkar, A. R., Windmiller, J. J., Andrade, F. & Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst138, 7031–7038 (2013).
Article
PubMed
CAS
Google Scholar
Bandodkar, A. J. et al. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron.54, 603–609 (2014).
Article
PubMed
CAS
Google Scholar
Huang, X. et al. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small10, 3083–3090 (2014).
Article
PubMed
CAS
Google Scholar
Rose, D. P. et al. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Biomed. Eng.62, 1457–1465 (2015).
Article
PubMed
Google Scholar
Glennon, T. et al. ‘SWEATCH’: a wearable platform for harvesting and analysing sweat sodium content. Electroanalysis28, 1283–1289 (2016).
Article
CAS
Google Scholar
Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature529, 509–514 (2016).
Article
PubMed
PubMed Central
CAS
Google Scholar
Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med.8, 366ra165 (2016).
Article
PubMed
PubMed Central
Google Scholar
Choi, J., Kang, D., Han, S., Kim, S. B. & Rogers, J. A. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthc. Mater.6, 1601355 (2017).
Article
Google Scholar
Nyein, H. Y. Y. et al. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens.3, 944–952 (2018).
Article
PubMed
CAS
Google Scholar
Hauke, A. et al. Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation. LabChip18, 3750–3759 (2018).
CAS
Google Scholar
Nyein, H. Y. Y. et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun.12, 1823 (2021).
Article
PubMed
PubMed Central
CAS
Google Scholar
Tai, L.-C. et al. Methylxanthine drug monitoring with wearable sweat sensors. Adv. Mater.30, 1707442 (2018).
Article
Google Scholar
Tai, L.-C. et al. Wearable sweat band for noninvasive levodopa monitoring. NanoLett.19, 6346–6351 (2019).
CAS
Google Scholar
Ruwe, T. Diverse drug classes partition into human sweat: implications for both sweat fundamentals and for therapeutic drug monitoring. Ther. Drug Monit. 10.1097/FTD.0000000000001110 (2023).
Harshman, S. W. et al. The proteomic and metabolomic characterization of exercise-induced sweat for human performance monitoring: a pilot investigation. PLoS ONE13, e0203133 (2018).
Article
PubMed
PubMed Central
Google Scholar
Kwon, K. et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat. Electron.4, 302–312 (2021).
Article
Google Scholar
Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv.5, eaav3294 (2019).
Article
PubMed
PubMed Central
Google Scholar
Heikenfeld, J. Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016. Electroanalysis28, 1242–1249 (2016).
Article
CAS
Google Scholar
Moyen, N. E. et al. Accuracy of algorithm to non-invasively predict core body temperature using the Kenzen wearable device. Int. J. Environ. Res. Public Health18, 13126 (2021).
Article
PubMed
PubMed Central
Google Scholar
Tang, W. et al. Touch-based stressless cortisol sensing. Adv. Mater.33, 2008465 (2021).
Article
CAS
Google Scholar
Lin, S. et al. Natural perspiration sampling and in situ electrochemical analysis with hydrogel micropatches for user-identifiable and wireless chemo/biosensing. ACS Sens.5, 93–102 (2020).
Article
PubMed
CAS
Google Scholar
Paul, B., Demuru, S., Lafaye, C., Saubade, M. & Briand, D. Printed iontophoretic-integrated wearable microfluidic sweat-sensing patch for on-demand point-of-care sweat analysis. Adv. Mater. Technol.6, 2000910 (2021).
Article
CAS
Google Scholar
Sonner, Z., Wilder, E., Gaillard, T., Kasting, G. & Heikenfeld, J. Integrated sudomotor axon reflex sweat stimulation for continuous sweat analyte analysis with individuals at rest. LabChip17, 2550–2560 (2017).
CAS
Google Scholar
Peng, R. et al. A new oil/membrane approach for integrated sweat sampling and sensing: sample volumes reduced from μL’s to nL’s and reduction of analyte contamination from skin. LabChip16, 4415–4423 (2016).
CAS
Google Scholar
Reeder, J. T. et al. Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Sci. Adv.5, eaau6356 (2019).
Article
PubMed
PubMed Central
Google Scholar
Brebner, D. F. & Kerslake, D. McK. The time course of the decline in sweating produced by wetting the skin. J. Physiol.175, 295–302 (1964).
Article
PubMed
PubMed Central
CAS
Google Scholar
Twine, N. B. et al. Open nanofluidic films with rapid transport and no analyte exchange for ultra-low sample volumes. LabChip18, 2816–2825 (2018).
CAS
Google Scholar
Baker, L. B. Sweating rate and sweat sodium concentration in athletes: a review of methodology and intra/interindividual variability. Sports Med.47, 111–128 (2017).
Article
PubMed
PubMed Central
Google Scholar
Yuan, Z. et al. A multi-modal sweat sensing patch for cross-verification of sweat rate, total ionic charge, and Na+ concentration. LabChip19, 3179–3189 (2019).
CAS
Google Scholar
Wang, S. et al. An unconventional vertical fluidic-controlled wearable platform for synchronously detecting sweat rate and electrolyte concentration. Biosens. Bioelectron.210, 114351 (2022).
Article
PubMed
CAS
Google Scholar
Montain, S. J., Latzka, W. A. & Sawka, M. N. Control of thermoregulatory sweating is altered by hydration level and exercise intensity. J. Appl. Physiol.79, 1434–1439 (1995).
Article
PubMed
CAS
Google Scholar
Sawka, M. N. & Montain, S. J. Fluid and electrolyte supplementation for exercise heat stress. Am. J. Clin. Nutr.72, 564S–572S (2000).
Article
PubMed
CAS
Google Scholar
Nyein, H. Y. Y. et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv.5, eaaw9906 (2019).
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao, F. J. et al. Ultra-simple wearable local sweat volume monitoring patch based on swellable hydrogels. LabChip20, 168–174 (2019).
Google Scholar
Doolittle, J., Walker, P., Mills, T. & Thurston, J. Hyperhidrosis: an update on prevalence and severity in the United States. Arch. Dermatol. Res.308, 743–749 (2016).
Article
PubMed
PubMed Central
Google Scholar
Korpelainen, J. T., Sotaniemi, K. A. & Myllylä, V. V. Asymmetric sweating in stroke: a prospective quantitative study of patients with hemispheral brain infarction. Neurology43, 1211–1214 (1993).
Article
PubMed
CAS
Google Scholar
Foster, K. G., Hey, E. N. & O’Connell, B. Sweat function in babies with defects of the central nervous system. Dev.Med. Child Neurol.11, 94 (2008).
Google Scholar
Cheshire, W. P. & Freeman, R. Disorders of sweating. Semin. Neurol.23, 399–406 (2003).
Article
PubMed
Google Scholar
Harker, M. Psychological sweating: a systematic review focused on aetiology and cutaneous response. Skin Pharmacol. Physiol.26, 92–100 (2013).
Article
PubMed
CAS
Google Scholar
Berglund, L. G. Comfort and humidity. ASHRAE J.40, 35–41 (1998).
Google Scholar
Rousseau, C. R. & Bühlmann, P. Calibration-free potentiometric sensing with solid-contact ion-selective electrodes. TrAC Trends Anal. Chem.140, 116277 (2021).
Article
CAS
Google Scholar
Bhide, A., Muthukumar, S., Saini, A. & Prasad, S. Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat. Sci. Rep.8, 6507 (2018).
Article
PubMed
PubMed Central
Google Scholar
Arroyo-Currás, N., Dauphin-Ducharme, P., Scida, K. & Chávez, J. L. From the beaker to the body: translational challenges for electrochemical, aptamer-based sensors. Anal. Methods12, 1288–1310 (2020).
Article
Google Scholar
Potyrailo, R. A., Conrad, R. C., Ellington, A. D. & Hieftje, G. M. Adapting selected nucleic acid ligands (aptamers) to biosensors. Anal. Chem.70, 3419–3425 (1998).
Article
PubMed
CAS
Google Scholar
Zhang, F., Xue, J., Shao, J. & Jia, L. Compilation of 222 drugs’ plasma protein binding data and guidance for study designs. Drug Discov. Today17, 475–485 (2012).
Article
PubMed
CAS
Google Scholar
Yuan, Y. et al. Oil-membrane protection of electrochemical sensors for fouling- and pH-insensitive detection of lipophilic analytes. ACS Appl. Mater. Interfaces13, 53553–53563 (2021).
Article
PubMed
CAS
Google Scholar
Shaver, A., Curtis, S. D. & Arroyo-Currás, N. Alkanethiol monolayer end groups affect the long-term operational stability and signaling of electrochemical, aptamer-based sensors in biological fluids. ACS Appl. Mater. Interfaces12, 11214–11223 (2020).
Article
PubMed
CAS
Google Scholar
Watkins, Z., Karajić, A., Young, T., White, R. & Heikenfeld, J. Week-long operation of electrochemical aptamer sensors: new insights into self-assembled monolayer degradation mechanisms and solutions for stability in biofluid at body temperature. ACS Sens. 8, 1119–1131 (2023).
Xu, J. & Lee, H. Anti-biofouling strategies for long-term continuous use of implantable biosensors. Chemosensors8, 66 (2020).
Article
CAS
Google Scholar
Li, H., Dauphin-Ducharme, P., Ortega, G. & Plaxco, K. W. Calibration-free electrochemical biosensors supporting accurate molecular measurements directly in undiluted whole blood. J. Am. Chem. Soc.139, 11207–11213 (2017).
Article
PubMed
PubMed Central
CAS
Google Scholar
Das, S. K., Nayak, K. K., Krishnaswamy, P. R., Kumar, V. & Bhat, N. Review—electrochemistry and other emerging technologies for continuous glucose monitoring devices. ECS Sens. Plus1, 031601 (2022).
Article
Google Scholar
Troudt, B. K., Rousseau, C. R., Dong, X. I. N., Anderson, E. L. & Bühlmann, P. Recent progress in the development of improved reference electrodes for electrochemistry. Anal. Sci.38, 71–83 (2022).
Article
PubMed
CAS
Google Scholar
Pirovano, P. et al. A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta219, 121145 (2020).
Article
PubMed
CAS
Google Scholar
Forlenza, G. P., Kushner, T., Messer, L. H., Wadwa, R. P. & Sankaranarayanan, S. Factory-calibrated continuous glucose monitoring: how and why it works, and the dangers of reuse beyond approved duration of wear. Diabetes Technol. Ther.21, 222–229 (2019).
Article
PubMed
PubMed Central
Google Scholar
Dautta, M. et al. Tape-free, digital wearable band for exercise sweat rate monitoring. Adv. Mater. Technol. 8, 2201187 (2023).
Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl Acad. Sci. USA114, 4625–4630 (2017).
Article
PubMed
PubMed Central
CAS
Google Scholar
Klous, L., de Ruiter, C. J., Scherrer, S., Gerrett, N. & Daanen, H. A. M. The (in)dependency of blood and sweat sodium, chloride, potassium, ammonia, lactate and glucose concentrations during submaximal exercise. Eur. J. Appl. Physiol.121, 803–816 (2021).
Article
PubMed
CAS
Google Scholar
Wiorek, A., Parrilla, M., Cuartero, M. & Crespo, G. A. Epidermal patch with glucose biosensor: pH and temperature correction toward more accurate sweat analysis during sport practice. Anal. Chem.92, 10153–10161 (2020).
Article
PubMed
PubMed Central
CAS
Google Scholar
Francis, J., Stamper, I., Heikenfeld, J. & Gomez, E. F. Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement. LabChip19, 178–185 (2019).
CAS
Google Scholar
Moon, J.-M. et al. Non-invasive sweat-based tracking of l-dopa pharmacokinetic profiles following an oral tablet administration. Angew. Chem. Int. Ed. Engl.133, 19222–19226 (2021).
Article
Google Scholar
Montanga, W., Kligman, A. M. & Carlisle, K. S. Atlas of Normal Human Skin (Springer, 1992).
Illigens, B. M. W. & Gibbons, C. H. in Handbook of Clinical Neurology (eds Levin, K. H. & Chauvel, P.) Vol. 160, 419–433 (Elsevier, 2019).
Download references
>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Nature.com – https://www.nature.com/articles/s41587-023-02059-1