References
Sanger, F., Nicklen, F. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA74, 5463–5467 (1977).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsien, R. Y., Ross, P., Fahnestock, M. & Johnston, A. DNA sequencing. Patent WO9106678A1 (1990).
Ronaghi, M., Uhlén, M. & Nyrén, P. A sequencing method based on real-time pyrophosphate. Science281, 363–365 (1998).
Article
CAS
PubMed
Google Scholar
International Human Genome Consortium. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001).
Article
Google Scholar
Venter, J. C. et al. The sequence of the human genome. Science291, 1304–1351 (2001).
Article
CAS
PubMed
Google Scholar
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell129, 823–837 (2007).
Article
CAS
PubMed
Google Scholar
Johnson, G. D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein–DNA interactions. Science316, 1497–1502 (2007).
Article
CAS
PubMed
Google Scholar
Gupta, N. & Verma, V. K. Next-generation sequencing and its application: empowering in public health beyond reality. In Microbial Technology for the Welfare of Society: Microorganisms for Sustainability (ed. Arora, P.) Vol. 17 (Springer, 2019).
Willson, J. Sequencing — the next generation. Nature Milestones S7 (2021).
Burgess, D. The dawn of personal genomes. Nature Milestones S9 (2021).
Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature456, 53–59 (2008).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang, J. et al. The diploid genome sequence of an Asian individual. Nature456, 60–66 (2008).
Article
CAS
PubMed
PubMed Central
Google Scholar
Furey, W. S. et al. Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment. Biochemistry37, 2979–2990 (1998).
Article
CAS
PubMed
Google Scholar
Canard, B. & Sarfati, R. S. DNA polymerase fluorescent substrates with reversible 3′-tags. Gene148, 1–6 (1994).
Article
CAS
PubMed
Google Scholar
Welch, M. B. et al. Syntheses of nucleosides designed for combinatorial DNA sequencing. Chem. Eur. J.5, 951–960 (1999).
Article
CAS
Google Scholar
Metzker, M. L. et al. Termination of DNA synthesis by novel 3′-modified deoxyribonucleoside 5′-triphosphates. Nucleic Acids Res.22, 4259–4267 (1994).
Article
CAS
PubMed
PubMed Central
Google Scholar
Turcatti, G., Romieu, A., Fedurco, M. & Tairi, A.-P. A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic Acids Res.36, e25 (2008).
Article
PubMed
PubMed Central
Google Scholar
Staudinger, H. & Meyer, J. Über neue organische phosphorverbindungen III. Phosphinmethylenderivate und phosphinimine. Helv. Chim. Acta2, 635 (1919).
Article
CAS
Google Scholar
Balasubramanian, S. Sequencing nucleic acids: from chemistry to medicine. Chem. Commun.47, 7281–7286 (2011).
Article
CAS
Google Scholar
Barnes, C., Balasubramanian, S., Liu, X., Swerdlow, H. & Milton, J. Labelled nucleotides. US patent 7,057,026 B2 (2002).
Sarfati, S. R. et al. Synthesis of fluorescent or biotinylated nucleoside compounds. Tetrahedron43, 3491–3497 (1987).
Article
CAS
Google Scholar
Rosenblum, B. B. et al. New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Res.25, 4500–4504 (1997).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiefer, J. R., Mao, C., Braman, J. C. & Beese, L. S. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature391, 304–307 (1998).
Article
CAS
PubMed
Google Scholar
Smith, G. P., Bailey, D. M. D., Sanches, R. M., Swerdlow, H. & Earnshaw, D. J. Modified polymerases for improved incorporation of nucleotide analogues. Patent WO 2005/024010 A1 (2003).
Ost, T. W. B., Smith, G. P., Balasubramanian, S., Rigatti, R. & Sanches, R. M. Improved polymerases. Patent WO 2006/120433 A1 (2006).
Smith, G. P., Bailey, D. M. D., Sanches-Kuiper, R. M., Swerdlow, H. & Earnshaw, D. J. Modified polymerases for improved incorporation of nucleotide analogues. US patent 8,852,910 B2 (2003).
Smith, M. et al. Modified molecular arrays. Patent WO 2005/065814 A1 (2005).
Kawashima, E., Farinelli, L. & Mayer, P. Method of nucleic acid amplification by extension of immobilized primers. Patent WO 9844151 (1998).
Mayer, P. Isothermal amplification of nucleic acids on a solid support. Patent WO 02/46456 (2001).
Robinson, R. A synthesis of tropinone. J. Chem. Soc.111, 762–768 (1917).
Rodriguez, A. R. et al. Total synthesis of cyercene A and the biomimetic synthesis of (±)-9,10-deoxytridachione and (±)-ocellapyrone. Tetrahedron63, 4500–4509 (2007).
Article
CAS
Google Scholar
Wuts, P. G. M. & Greene, T. W. Greene’s Protective Groups in Organic Synthesis 4th edn (John Wiley & Sons, 2006).
Baran, P. S., Maimone, T. J. & Richter, J. M. Total synthesis of marine natural products without using protecting groups. Nature446, 404–408 (2007).
Article
CAS
PubMed
Google Scholar
Trost, B. M. The atom economy—a search for synthetic efficiency. Science254, 1471–1477 (1991).
Article
CAS
PubMed
Google Scholar
Koboldt, D. C., Meltz Steinberg, K., Larson, D. E., Wilson, R. K. & Mardis, E. R. The next-generation sequencing revolution and its impact on genomics. Cell155, 27–38 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez, R. et al. Small molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol.8, 301–310 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez, R. & Miller, K. M. Unravelling the genomic targets of small molecules using high-throughput sequencing. Nat. Rev. Genet.15, 783–796 (2014).
Article
CAS
PubMed
Google Scholar
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods5, 621–628 (2008).
Article
CAS
PubMed
Google Scholar
Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science353, 78–82 (2016).
Article
PubMed
Google Scholar
Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature550, 346–353 (2017).
Article
Google Scholar
Newby, G. A. et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature595, 295–302 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med.382, 727–733 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Veetil, A. T. & Krishnan, Y. In Advanced Chemical Biology (eds Hang, H. C., Pratt, M. R. & Prescher, J. A.) Ch. 2, pp 9–30 (Wiley-VCH, 2023).
Download references
>>> Read full article>>>
Copyright for syndicated content belongs to the linked Source : Nature.com – https://www.nature.com/articles/s41587-023-01986-3